|
1
|
|
|
# coding=utf-8 |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
Tests for deepreg/_model/network/ddf_dvf.py |
|
5
|
|
|
""" |
|
6
|
|
|
import itertools |
|
7
|
|
|
from copy import deepcopy |
|
8
|
|
|
from unittest.mock import MagicMock, patch |
|
9
|
|
|
|
|
10
|
|
|
import pytest |
|
11
|
|
|
|
|
12
|
|
|
from deepreg.model.network import RegistrationModel |
|
13
|
|
|
from deepreg.registry import REGISTRY |
|
14
|
|
|
|
|
15
|
|
|
moving_image_size = (1, 3, 5) |
|
16
|
|
|
fixed_image_size = (2, 4, 6) |
|
17
|
|
|
index_size = 2 |
|
18
|
|
|
batch_size = 3 |
|
19
|
|
|
backbone_args = { |
|
20
|
|
|
"local": {"extract_levels": [1, 2]}, |
|
21
|
|
|
"global": {"extract_levels": [1, 2]}, |
|
22
|
|
|
"unet": {"depth": 2}, |
|
23
|
|
|
} |
|
24
|
|
|
config = { |
|
25
|
|
|
"backbone": {"num_channel_initial": 4, "control_points": 2}, |
|
26
|
|
|
"loss": { |
|
27
|
|
|
"image": {"name": "lncc", "weight": 0.1}, |
|
28
|
|
|
"label": { |
|
29
|
|
|
"name": "dice", |
|
30
|
|
|
"weight": 1, |
|
31
|
|
|
"scales": [0, 1], |
|
32
|
|
|
}, |
|
33
|
|
|
"regularization": {"weight": 0.1, "name": "bending"}, |
|
34
|
|
|
}, |
|
35
|
|
|
} |
|
36
|
|
|
|
|
37
|
|
|
config_multiple_losses = { |
|
38
|
|
|
"backbone": {"num_channel_initial": 4, "control_points": 2}, |
|
39
|
|
|
"loss": { |
|
40
|
|
|
"image": [ |
|
41
|
|
|
{"name": "lncc", "weight": 0.1}, |
|
42
|
|
|
{"name": "ssd", "weight": 0.1}, |
|
43
|
|
|
{"name": "gmi", "weight": 0.1}, |
|
44
|
|
|
], |
|
45
|
|
|
"label": { |
|
46
|
|
|
"name": "dice", |
|
47
|
|
|
"weight": 1, |
|
48
|
|
|
"scales": [0, 1], |
|
49
|
|
|
}, |
|
50
|
|
|
"regularization": {"weight": 0.1, "name": "bending"}, |
|
51
|
|
|
}, |
|
52
|
|
|
} |
|
53
|
|
|
|
|
54
|
|
|
|
|
55
|
|
|
@pytest.fixture |
|
56
|
|
|
def model(method: str, labeled: bool, backbone: str) -> RegistrationModel: |
|
57
|
|
|
""" |
|
58
|
|
|
A specific registration model object. |
|
59
|
|
|
|
|
60
|
|
|
:param method: name of method |
|
61
|
|
|
:param labeled: whether the data is labeled |
|
62
|
|
|
:param backbone: name of backbone |
|
63
|
|
|
:return: the built object |
|
64
|
|
|
""" |
|
65
|
|
|
copied = deepcopy(config) |
|
66
|
|
|
copied["method"] = method |
|
67
|
|
|
copied["backbone"]["name"] = backbone # type: ignore |
|
68
|
|
|
if method == "conditional": |
|
69
|
|
|
copied["backbone"].pop("control_points", None) # type: ignore |
|
70
|
|
|
copied["backbone"].update(backbone_args[backbone]) # type: ignore |
|
71
|
|
|
return REGISTRY.build_model( # type: ignore |
|
72
|
|
|
config=dict( |
|
73
|
|
|
name=method, # TODO we store method twice |
|
74
|
|
|
moving_image_size=moving_image_size, |
|
75
|
|
|
fixed_image_size=fixed_image_size, |
|
76
|
|
|
index_size=index_size, |
|
77
|
|
|
labeled=labeled, |
|
78
|
|
|
batch_size=batch_size, |
|
79
|
|
|
config=copied, |
|
80
|
|
|
) |
|
81
|
|
|
) |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
def pytest_generate_tests(metafunc): |
|
85
|
|
|
""" |
|
86
|
|
|
Test parameter generator. |
|
87
|
|
|
|
|
88
|
|
|
This function is called once per each test function. |
|
89
|
|
|
It takes the attribute `params` from the test class, |
|
90
|
|
|
and then use the same `params` for all tests inside the class. |
|
91
|
|
|
This is specific for test of registration models only. |
|
92
|
|
|
|
|
93
|
|
|
This is modified from the pytest documentation, |
|
94
|
|
|
where their version defined the params for each test function separately. |
|
95
|
|
|
|
|
96
|
|
|
https://docs.pytest.org/en/stable/example/parametrize.html#parametrizing-test-methods-through-per-class-configuration |
|
97
|
|
|
|
|
98
|
|
|
:param metafunc: |
|
99
|
|
|
:return: |
|
100
|
|
|
""" |
|
101
|
|
|
# |
|
102
|
|
|
funcarglist = metafunc.cls.params |
|
103
|
|
|
argnames = sorted(funcarglist[0]) |
|
104
|
|
|
metafunc.parametrize( |
|
105
|
|
|
argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist] |
|
106
|
|
|
) |
|
107
|
|
|
|
|
108
|
|
|
|
|
109
|
|
|
class TestRegistrationModel: |
|
110
|
|
|
params = [dict(labeled=True), dict(labeled=False)] |
|
111
|
|
|
|
|
112
|
|
|
@pytest.fixture |
|
113
|
|
|
def empty_model(self, labeled: bool) -> RegistrationModel: |
|
114
|
|
|
""" |
|
115
|
|
|
A RegistrationModel with build_model and build_loss mocked/overwritten. |
|
116
|
|
|
|
|
117
|
|
|
:param labeled: whether the data is labeled |
|
118
|
|
|
:return: the mocked object |
|
119
|
|
|
""" |
|
120
|
|
|
with patch.multiple( |
|
121
|
|
|
RegistrationModel, |
|
122
|
|
|
build_model=MagicMock(return_value=None), |
|
123
|
|
|
build_loss=MagicMock(return_value=None), |
|
124
|
|
|
): |
|
125
|
|
|
return RegistrationModel( |
|
126
|
|
|
moving_image_size=moving_image_size, |
|
127
|
|
|
fixed_image_size=fixed_image_size, |
|
128
|
|
|
index_size=index_size, |
|
129
|
|
|
labeled=labeled, |
|
130
|
|
|
batch_size=batch_size, |
|
131
|
|
|
config=dict(), |
|
132
|
|
|
) |
|
133
|
|
|
|
|
134
|
|
|
def test_get_config(self, empty_model, labeled): |
|
135
|
|
|
got = empty_model.get_config() |
|
136
|
|
|
expected = dict( |
|
137
|
|
|
moving_image_size=moving_image_size, |
|
138
|
|
|
fixed_image_size=fixed_image_size, |
|
139
|
|
|
index_size=index_size, |
|
140
|
|
|
labeled=labeled, |
|
141
|
|
|
batch_size=batch_size, |
|
142
|
|
|
config=dict(), |
|
143
|
|
|
name="RegistrationModel", |
|
144
|
|
|
) |
|
145
|
|
|
assert got == expected |
|
146
|
|
|
|
|
147
|
|
|
def test_build_inputs(self, empty_model, labeled): |
|
148
|
|
|
inputs = empty_model.build_inputs() |
|
149
|
|
|
expected_inputs_len = 5 if labeled else 3 |
|
150
|
|
|
assert len(inputs) == expected_inputs_len |
|
151
|
|
|
|
|
152
|
|
|
moving_image = inputs["moving_image"] |
|
153
|
|
|
fixed_image = inputs["fixed_image"] |
|
154
|
|
|
indices = inputs["indices"] |
|
155
|
|
|
assert moving_image.shape == (batch_size, *moving_image_size) |
|
156
|
|
|
assert fixed_image.shape == (batch_size, *fixed_image_size) |
|
157
|
|
|
assert indices.shape == (batch_size, index_size) |
|
158
|
|
|
|
|
159
|
|
|
if labeled: |
|
160
|
|
|
moving_label = inputs["moving_label"] |
|
161
|
|
|
fixed_label = inputs["fixed_label"] |
|
162
|
|
|
assert moving_label.shape == (batch_size, *moving_image_size) |
|
163
|
|
|
assert fixed_label.shape == (batch_size, *fixed_image_size) |
|
164
|
|
|
|
|
165
|
|
|
def test_concat_images(self, empty_model, labeled): |
|
166
|
|
|
inputs = empty_model.build_inputs() |
|
167
|
|
|
moving_image = inputs["moving_image"] |
|
168
|
|
|
fixed_image = inputs["fixed_image"] |
|
169
|
|
|
if labeled: |
|
170
|
|
|
moving_label = inputs["moving_label"] |
|
171
|
|
|
images = empty_model.concat_images(moving_image, fixed_image, moving_label) |
|
172
|
|
|
assert images.shape == (batch_size, *fixed_image_size, 3) |
|
173
|
|
|
else: |
|
174
|
|
|
images = empty_model.concat_images(moving_image, fixed_image) |
|
175
|
|
|
assert images.shape == (batch_size, *fixed_image_size, 2) |
|
176
|
|
|
|
|
177
|
|
|
|
|
178
|
|
|
class TestBuildLoss: |
|
179
|
|
|
params = [ |
|
180
|
|
|
dict(config=config, option=0, expected=2), |
|
181
|
|
|
dict(config=config, option=1, expected=2), |
|
182
|
|
|
dict(config=config, option=2, expected=3), |
|
183
|
|
|
dict(config=config_multiple_losses, option=3, expected=5), |
|
184
|
|
|
] |
|
185
|
|
|
|
|
186
|
|
|
def test_image_loss(self, config: dict, option: int, expected: int): |
|
187
|
|
|
method = "ddf" |
|
188
|
|
|
backbone = "local" |
|
189
|
|
|
labeled = True |
|
190
|
|
|
copied = deepcopy(config) |
|
191
|
|
|
copied["method"] = method |
|
192
|
|
|
copied["backbone"]["name"] = backbone |
|
193
|
|
|
copied["backbone"] = { |
|
194
|
|
|
**backbone_args[backbone], # type: ignore |
|
195
|
|
|
**copied["backbone"], |
|
196
|
|
|
} |
|
197
|
|
|
|
|
198
|
|
|
if option == 0: |
|
199
|
|
|
# remove image loss config, so loss is not used |
|
200
|
|
|
copied["loss"].pop("image") |
|
201
|
|
|
elif option == 1: |
|
202
|
|
|
# set image loss weight to zero, so loss is not used |
|
203
|
|
|
copied["loss"]["image"]["weight"] = 0.0 |
|
204
|
|
|
elif option == 2: |
|
205
|
|
|
# remove image loss weight, so loss is used with default weight 1 |
|
206
|
|
|
copied["loss"]["image"].pop("weight") |
|
207
|
|
|
|
|
208
|
|
|
ddf_model = REGISTRY.build_model( |
|
209
|
|
|
config=dict( |
|
210
|
|
|
name=method, # TODO we store method twice |
|
211
|
|
|
moving_image_size=moving_image_size, |
|
212
|
|
|
fixed_image_size=fixed_image_size, |
|
213
|
|
|
index_size=index_size, |
|
214
|
|
|
labeled=labeled, |
|
215
|
|
|
batch_size=batch_size, |
|
216
|
|
|
config=copied, |
|
217
|
|
|
) |
|
218
|
|
|
) |
|
219
|
|
|
|
|
220
|
|
|
assert len(ddf_model._model.losses) == expected # type: ignore |
|
221
|
|
|
|
|
222
|
|
|
|
|
223
|
|
|
class TestDDFModel: |
|
224
|
|
|
params = [ |
|
225
|
|
|
dict(method=method, labeled=labeled, backbone=backbone) |
|
226
|
|
|
for method, labeled, backbone in itertools.product( |
|
227
|
|
|
["ddf"], [True, False], ["local", "global", "unet"] |
|
228
|
|
|
) |
|
229
|
|
|
] |
|
230
|
|
|
|
|
231
|
|
View Code Duplication |
def test_build_model(self, model, labeled, backbone): |
|
|
|
|
|
|
232
|
|
|
expected_outputs_len = 3 if labeled else 2 |
|
233
|
|
|
if backbone == "global": |
|
234
|
|
|
expected_outputs_len += 1 |
|
235
|
|
|
theta = model._outputs["theta"] |
|
236
|
|
|
assert theta.shape == (batch_size, 4, 3) |
|
237
|
|
|
assert len(model._outputs) == expected_outputs_len |
|
238
|
|
|
|
|
239
|
|
|
ddf = model._outputs["ddf"] |
|
240
|
|
|
pred_fixed_image = model._outputs["pred_fixed_image"] |
|
241
|
|
|
assert ddf.shape == (batch_size, *fixed_image_size, 3) |
|
242
|
|
|
assert pred_fixed_image.shape == (batch_size, *fixed_image_size) |
|
243
|
|
|
|
|
244
|
|
|
if labeled: |
|
245
|
|
|
pred_fixed_label = model._outputs["pred_fixed_label"] |
|
246
|
|
|
assert pred_fixed_label.shape == (batch_size, *fixed_image_size) |
|
247
|
|
|
|
|
248
|
|
|
def test_build_loss(self, model, labeled, backbone): |
|
249
|
|
|
expected = 3 if labeled else 2 |
|
250
|
|
|
assert len(model._model.losses) == expected |
|
251
|
|
|
|
|
252
|
|
|
def test_postprocess(self, model, labeled, backbone): |
|
253
|
|
|
indices, processed = model.postprocess( |
|
254
|
|
|
inputs=model._inputs, outputs=model._outputs |
|
255
|
|
|
) |
|
256
|
|
|
assert indices.shape == (batch_size, index_size) |
|
257
|
|
|
expected = 7 if labeled else 4 |
|
258
|
|
|
if backbone == "global": |
|
259
|
|
|
expected += 1 |
|
260
|
|
|
assert len(processed) == expected |
|
261
|
|
|
|
|
262
|
|
|
|
|
263
|
|
|
class TestDVFModel: |
|
264
|
|
|
params = [ |
|
265
|
|
|
dict(method=method, labeled=labeled, backbone=backbone) |
|
266
|
|
|
for method, labeled, backbone in itertools.product( |
|
267
|
|
|
["dvf"], [True, False], ["local", "unet"] |
|
268
|
|
|
) |
|
269
|
|
|
] |
|
270
|
|
|
|
|
271
|
|
View Code Duplication |
def test_build_model(self, model, labeled, backbone): |
|
|
|
|
|
|
272
|
|
|
expected_outputs_len = 4 if labeled else 3 |
|
273
|
|
|
assert len(model._outputs) == expected_outputs_len |
|
274
|
|
|
|
|
275
|
|
|
dvf = model._outputs["dvf"] |
|
276
|
|
|
ddf = model._outputs["ddf"] |
|
277
|
|
|
pred_fixed_image = model._outputs["pred_fixed_image"] |
|
278
|
|
|
assert dvf.shape == (batch_size, *fixed_image_size, 3) |
|
279
|
|
|
assert ddf.shape == (batch_size, *fixed_image_size, 3) |
|
280
|
|
|
assert pred_fixed_image.shape == (batch_size, *fixed_image_size) |
|
281
|
|
|
|
|
282
|
|
|
if labeled: |
|
283
|
|
|
pred_fixed_label = model._outputs["pred_fixed_label"] |
|
284
|
|
|
assert pred_fixed_label.shape == (batch_size, *fixed_image_size) |
|
285
|
|
|
|
|
286
|
|
|
def test_build_loss(self, model, labeled, backbone): |
|
287
|
|
|
expected = 3 if labeled else 2 |
|
288
|
|
|
assert len(model._model.losses) == expected |
|
289
|
|
|
|
|
290
|
|
|
def test_postprocess(self, model, labeled, backbone): |
|
291
|
|
|
indices, processed = model.postprocess( |
|
292
|
|
|
inputs=model._inputs, outputs=model._outputs |
|
293
|
|
|
) |
|
294
|
|
|
assert indices.shape == (batch_size, index_size) |
|
295
|
|
|
expected = 8 if labeled else 5 |
|
296
|
|
|
assert len(processed) == expected |
|
297
|
|
|
|
|
298
|
|
|
|
|
299
|
|
|
class TestConditionalModel: |
|
300
|
|
|
params = [ |
|
301
|
|
|
dict(method=method, labeled=labeled, backbone=backbone) |
|
302
|
|
|
for method, labeled, backbone in itertools.product( |
|
303
|
|
|
["conditional"], [True], ["local", "unet"] |
|
304
|
|
|
) |
|
305
|
|
|
] |
|
306
|
|
|
|
|
307
|
|
|
def test_build_model(self, model, labeled, backbone): |
|
308
|
|
|
assert len(model._outputs) == 1 |
|
309
|
|
|
pred_fixed_label = model._outputs["pred_fixed_label"] |
|
310
|
|
|
assert pred_fixed_label.shape == (batch_size, *fixed_image_size) |
|
311
|
|
|
|
|
312
|
|
|
def test_build_loss(self, model, labeled, backbone): |
|
313
|
|
|
assert len(model._model.losses) == 1 |
|
314
|
|
|
|
|
315
|
|
|
def test_postprocess(self, model, labeled, backbone): |
|
316
|
|
|
indices, processed = model.postprocess( |
|
317
|
|
|
inputs=model._inputs, outputs=model._outputs |
|
318
|
|
|
) |
|
319
|
|
|
assert indices.shape == (batch_size, index_size) |
|
320
|
|
|
assert len(processed) == 5 |
|
321
|
|
|
|