1
|
|
|
""" |
2
|
|
|
Load grouped data. |
3
|
|
|
Supported formats: h5 and Nifti. |
4
|
|
|
Image data can be labeled or unlabeled. |
5
|
|
|
Read https://deepreg.readthedocs.io/en/latest/api/loader.html#module-deepreg.dataset.loader.grouped_loader for more details. |
6
|
|
|
""" |
7
|
|
|
import random |
8
|
|
|
from copy import deepcopy |
9
|
|
|
from typing import List, Optional, Tuple, Union |
10
|
|
|
|
11
|
|
|
from deepreg.dataset.loader.interface import ( |
12
|
|
|
AbstractUnpairedDataLoader, |
13
|
|
|
GeneratorDataLoader, |
14
|
|
|
) |
15
|
|
|
from deepreg.dataset.util import check_difference_between_two_lists |
16
|
|
|
from deepreg.registry import REGISTRY |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
@REGISTRY.register_data_loader(name="grouped") |
20
|
|
|
class GroupedDataLoader(AbstractUnpairedDataLoader, GeneratorDataLoader): |
21
|
|
|
""" |
22
|
|
|
Load grouped data. |
23
|
|
|
|
24
|
|
|
Yield indexes of images to load using |
25
|
|
|
sample_index_generator from GeneratorDataLoader. |
26
|
|
|
AbstractUnpairedLoader handles different file formats |
27
|
|
|
""" |
28
|
|
|
|
29
|
|
|
def __init__( |
30
|
|
|
self, |
31
|
|
|
file_loader, |
32
|
|
|
data_dir_paths: List[str], |
33
|
|
|
labeled: bool, |
34
|
|
|
sample_label: Optional[str], |
35
|
|
|
intra_group_prob: float, |
36
|
|
|
intra_group_option: str, |
37
|
|
|
sample_image_in_group: bool, |
38
|
|
|
seed: Optional[int], |
39
|
|
|
image_shape: Union[Tuple[int, ...], List[int]], |
40
|
|
|
): |
41
|
|
|
""" |
42
|
|
|
:param file_loader: a subclass of FileLoader |
43
|
|
|
:param data_dir_paths: paths of the directory storing data, |
44
|
|
|
the data has to be saved under two different sub-directories: |
45
|
|
|
|
46
|
|
|
- images |
47
|
|
|
- labels |
48
|
|
|
|
49
|
|
|
:param labeled: bool, true if the data is labeled, false if unlabeled |
50
|
|
|
:param sample_label: "sample" or "all", read `get_label_indices` |
51
|
|
|
in deepreg/dataset/util.py for more details. |
52
|
|
|
:param intra_group_prob: float between 0 and 1, |
53
|
|
|
|
54
|
|
|
- 0 means generating only inter-group samples, |
55
|
|
|
- 1 means generating only intra-group samples |
56
|
|
|
|
57
|
|
|
:param intra_group_option: str, "forward", "backward, or "unconstrained" |
58
|
|
|
:param sample_image_in_group: bool, |
59
|
|
|
|
60
|
|
|
- if true, only one image pair will be yielded for each group, |
61
|
|
|
so one epoch has num_groups pairs of data, |
62
|
|
|
- if false, iterate through this loader will generate all possible pairs |
63
|
|
|
|
64
|
|
|
:param seed: controls the randomness in sampling, |
65
|
|
|
if seed=None, then the randomness is not fixed |
66
|
|
|
:param image_shape: list or tuple of length 3, |
67
|
|
|
corresponding to (dim1, dim2, dim3) of the 3D image |
68
|
|
|
""" |
69
|
|
|
super().__init__( |
70
|
|
|
image_shape=image_shape, |
71
|
|
|
labeled=labeled, |
72
|
|
|
sample_label=sample_label, |
73
|
|
|
seed=seed, |
74
|
|
|
) |
75
|
|
|
assert isinstance( |
76
|
|
|
data_dir_paths, list |
77
|
|
|
), f"data_dir_paths must be list of strings, got {data_dir_paths}" |
78
|
|
|
# init |
79
|
|
|
# the indices for identifying an image pair is (group1, sample1, group2, sample2, label) |
80
|
|
|
self.num_indices = 5 |
81
|
|
|
self.intra_group_option = intra_group_option |
82
|
|
|
self.intra_group_prob = intra_group_prob |
83
|
|
|
self.sample_image_in_group = sample_image_in_group |
84
|
|
|
# set file loaders |
85
|
|
|
# grouped data are not paired data, so moving/fixed share the same file loader for images/labels |
86
|
|
|
loader_image = file_loader( |
87
|
|
|
dir_paths=data_dir_paths, name="images", grouped=True |
88
|
|
|
) |
89
|
|
|
self.loader_moving_image = loader_image |
90
|
|
|
self.loader_fixed_image = loader_image |
91
|
|
|
if self.labeled is True: |
92
|
|
|
loader_label = file_loader( |
93
|
|
|
dir_paths=data_dir_paths, name="labels", grouped=True |
94
|
|
|
) |
95
|
|
|
self.loader_moving_label = loader_label |
96
|
|
|
self.loader_fixed_label = loader_label |
97
|
|
|
self.validate_data_files() |
98
|
|
|
# get group related stats |
99
|
|
|
self.num_groups = self.loader_moving_image.get_num_groups() |
100
|
|
|
self.num_images_per_group = self.loader_moving_image.get_num_images_per_group() |
101
|
|
|
if self.intra_group_prob < 1: |
102
|
|
|
if self.num_groups < 2: |
103
|
|
|
raise ValueError( |
104
|
|
|
f"There are {self.num_groups} groups, " |
105
|
|
|
f"we need at least two groups for inter group sampling" |
106
|
|
|
) |
107
|
|
|
# calculate number of samples and save pre-calculated sample indices |
108
|
|
|
if self.sample_image_in_group is True: |
109
|
|
|
# one image pair in each group (pair) will be yielded |
110
|
|
|
self.sample_indices = None |
111
|
|
|
self._num_samples = self.num_groups |
112
|
|
|
else: |
113
|
|
|
# all possible pair in each group (pair) will be yielded |
114
|
|
|
if intra_group_prob not in [0, 1]: |
115
|
|
|
raise ValueError( |
116
|
|
|
"Mixing intra and inter groups is not supported" |
117
|
|
|
" when not sampling pairs." |
118
|
|
|
) |
119
|
|
|
if intra_group_prob == 0: # inter group |
120
|
|
|
self.sample_indices = self.get_inter_sample_indices() |
121
|
|
|
else: # intra group |
122
|
|
|
self.sample_indices = self.get_intra_sample_indices() |
123
|
|
|
|
124
|
|
|
self._num_samples = len(self.sample_indices) # type: ignore |
125
|
|
|
|
126
|
|
|
def validate_data_files(self): |
127
|
|
|
"""If the data are labeled, verify image loader and label loader have the same files.""" |
128
|
|
|
if self.labeled is True: |
129
|
|
|
image_ids = self.loader_moving_image.get_data_ids() |
130
|
|
|
label_ids = self.loader_moving_label.get_data_ids() |
131
|
|
|
check_difference_between_two_lists( |
132
|
|
|
list1=image_ids, |
133
|
|
|
list2=label_ids, |
134
|
|
|
name="images and labels in grouped loader", |
135
|
|
|
) |
136
|
|
|
|
137
|
|
|
def get_intra_sample_indices(self) -> list: |
138
|
|
|
""" |
139
|
|
|
Calculate the sample indices for intra-group sampling |
140
|
|
|
The index to identify a sample is (group1, image1, group2, image2), means |
141
|
|
|
- image1 of group1 is moving image |
142
|
|
|
- image2 of group2 is fixed image |
143
|
|
|
|
144
|
|
|
Assuming group i has ni images, |
145
|
|
|
then in total the number of samples are |
146
|
|
|
- sum( ni * (ni-1) / 2 ) for forward/backward |
147
|
|
|
- sum( ni * (ni-1) ) for unconstrained |
148
|
|
|
|
149
|
|
|
:return: a list of sample indices |
150
|
|
|
""" |
151
|
|
|
intra_sample_indices = [] |
152
|
|
|
for group_index in range(self.num_groups): |
153
|
|
|
num_images_in_group = self.num_images_per_group[group_index] |
154
|
|
|
if self.intra_group_option == "forward": |
155
|
|
|
for i in range(num_images_in_group): |
156
|
|
|
for j in range(i): |
157
|
|
|
# j < i |
158
|
|
|
intra_sample_indices.append((group_index, j, group_index, i)) |
159
|
|
|
elif self.intra_group_option == "backward": |
160
|
|
|
for i in range(num_images_in_group): |
161
|
|
|
for j in range(i): |
162
|
|
|
# i > j |
163
|
|
|
intra_sample_indices.append((group_index, i, group_index, j)) |
164
|
|
|
elif self.intra_group_option == "unconstrained": |
165
|
|
|
for i in range(num_images_in_group): |
166
|
|
|
for j in range(i): |
167
|
|
|
# j < i, i > j |
168
|
|
|
intra_sample_indices.append((group_index, j, group_index, i)) |
169
|
|
|
intra_sample_indices.append((group_index, i, group_index, j)) |
170
|
|
|
else: |
171
|
|
|
raise ValueError( |
172
|
|
|
"Unknown intra_group_option, must be forward/backward/unconstrained" |
173
|
|
|
) |
174
|
|
|
return intra_sample_indices |
175
|
|
|
|
176
|
|
|
def get_inter_sample_indices(self) -> list: |
177
|
|
|
""" |
178
|
|
|
Calculate the sample indices for inter-group sampling |
179
|
|
|
The index to identify a sample is (group1, image1, group2, image2), means |
180
|
|
|
|
181
|
|
|
- image1 of group1 is moving image |
182
|
|
|
- image2 of group2 is fixed image |
183
|
|
|
|
184
|
|
|
All pairs of images in the dataset are registered. |
185
|
|
|
Assuming group i has ni images and that N=[n1, n2, ..., nI], |
186
|
|
|
then in total the number of samples are: |
187
|
|
|
sum(N) * (sum(N)-1) - sum( N * (N-1) ) |
188
|
|
|
|
189
|
|
|
:return: a list of sample indices |
190
|
|
|
""" |
191
|
|
|
inter_sample_indices = [] |
192
|
|
|
for group_index1 in range(self.num_groups): |
193
|
|
|
for group_index2 in range(self.num_groups): |
194
|
|
|
if group_index1 == group_index2: # do not sample from the same group |
195
|
|
|
continue |
196
|
|
|
num_images_in_group1 = self.num_images_per_group[group_index1] |
197
|
|
|
num_images_in_group2 = self.num_images_per_group[group_index2] |
198
|
|
|
for image_index1 in range(num_images_in_group1): |
199
|
|
|
for image_index2 in range(num_images_in_group2): |
200
|
|
|
inter_sample_indices.append( |
201
|
|
|
(group_index1, image_index1, group_index2, image_index2) |
202
|
|
|
) |
203
|
|
|
return inter_sample_indices |
204
|
|
|
|
205
|
|
|
def sample_index_generator(self): |
206
|
|
|
""" |
207
|
|
|
Yield (moving_index, fixed_index, image_indices) sequentially, where |
208
|
|
|
|
209
|
|
|
- moving_index = (group1, image1) |
210
|
|
|
- fixed_index = (group2, image2) |
211
|
|
|
- image_indices = [group1, image1, group2, image2] |
212
|
|
|
""" |
213
|
|
|
rnd = random.Random(self.seed) # set random seed |
214
|
|
|
if self.sample_image_in_group is True: |
215
|
|
|
# for each group sample one image pair only |
216
|
|
|
group_indices = [i for i in range(self.num_groups)] |
217
|
|
|
rnd.shuffle(group_indices) |
218
|
|
|
for group_index in group_indices: |
219
|
|
|
if rnd.random() <= self.intra_group_prob: |
220
|
|
|
# intra-group sampling |
221
|
|
|
# inside the group_index-th group, we sample two images as moving/fixed |
222
|
|
|
group_index1 = group_index |
223
|
|
|
group_index2 = group_index |
224
|
|
|
num_images_in_group = self.num_images_per_group[group_index] |
225
|
|
|
if num_images_in_group < 2: |
226
|
|
|
# skip groups having <2 images |
227
|
|
|
# currently have not encountered |
228
|
|
|
continue # pragma: no cover |
229
|
|
|
|
230
|
|
|
image_index1, image_index2 = rnd.sample( |
231
|
|
|
[i for i in range(num_images_in_group)], 2 |
232
|
|
|
) # sample two unique indices |
233
|
|
|
if self.intra_group_option == "forward": |
234
|
|
|
# image_index1 < image_index2 |
235
|
|
|
image_index1, image_index2 = ( |
236
|
|
|
min(image_index1, image_index2), |
237
|
|
|
max(image_index1, image_index2), |
238
|
|
|
) |
239
|
|
|
elif self.intra_group_option == "backward": |
240
|
|
|
# image_index1 > image_index2 |
241
|
|
|
image_index1, image_index2 = ( |
242
|
|
|
max(image_index1, image_index2), |
243
|
|
|
min(image_index1, image_index2), |
244
|
|
|
) |
245
|
|
|
elif self.intra_group_option == "unconstrained": |
246
|
|
|
pass |
247
|
|
|
else: |
248
|
|
|
raise ValueError( |
249
|
|
|
f"Unknown intra_group_option, " |
250
|
|
|
f"must be forward/backward/unconstrained, " |
251
|
|
|
f"got {self.intra_group_option}" |
252
|
|
|
) |
253
|
|
|
else: |
254
|
|
|
# inter-group sampling |
255
|
|
|
# we sample another group, then in each group we sample one image |
256
|
|
|
group_index1 = group_index |
257
|
|
|
group_index2 = rnd.choice( |
258
|
|
|
[i for i in range(self.num_groups) if i != group_index] |
259
|
|
|
) |
260
|
|
|
num_images_in_group1 = self.num_images_per_group[group_index1] |
261
|
|
|
num_images_in_group2 = self.num_images_per_group[group_index2] |
262
|
|
|
image_index1 = rnd.choice([i for i in range(num_images_in_group1)]) |
263
|
|
|
image_index2 = rnd.choice([i for i in range(num_images_in_group2)]) |
264
|
|
|
|
265
|
|
|
moving_index = (group_index1, image_index1) |
266
|
|
|
fixed_index = (group_index2, image_index2) |
267
|
|
|
image_indices = [group_index1, image_index1, group_index2, image_index2] |
268
|
|
|
yield moving_index, fixed_index, image_indices |
269
|
|
|
else: |
270
|
|
|
# sample indices are pre-calculated |
271
|
|
|
assert self.sample_indices is not None |
272
|
|
|
sample_indices = deepcopy(self.sample_indices) |
273
|
|
|
rnd.shuffle(sample_indices) # shuffle in place |
274
|
|
|
for sample_index in sample_indices: |
275
|
|
|
group_index1, image_index1, group_index2, image_index2 = sample_index |
276
|
|
|
moving_index = (group_index1, image_index1) |
277
|
|
|
fixed_index = (group_index2, image_index2) |
278
|
|
|
image_indices = [group_index1, image_index1, group_index2, image_index2] |
279
|
|
|
yield moving_index, fixed_index, image_indices |
280
|
|
|
|
281
|
|
|
def close(self): |
282
|
|
|
"""Close file loaders""" |
283
|
|
|
self.loader_moving_image.close() |
284
|
|
|
if self.labeled is True: |
285
|
|
|
self.loader_moving_label.close() |
286
|
|
|
|