|
1
|
|
|
""" |
|
2
|
|
|
Module to generate visualisations of data |
|
3
|
|
|
at command line interface. |
|
4
|
|
|
Requires ffmpeg writer to write gif files |
|
5
|
|
|
""" |
|
6
|
|
|
|
|
7
|
|
|
import argparse |
|
8
|
|
|
import os |
|
9
|
|
|
from typing import List |
|
10
|
|
|
|
|
11
|
|
|
import matplotlib.animation as animation |
|
12
|
|
|
import matplotlib.pyplot as plt |
|
13
|
|
|
import numpy as np |
|
14
|
|
|
import numpy.matlib |
|
15
|
|
|
|
|
16
|
|
|
from deepreg import log |
|
17
|
|
|
from deepreg.dataset.loader.nifti_loader import load_nifti_file |
|
18
|
|
|
from deepreg.model.layer import Warping |
|
19
|
|
|
|
|
20
|
|
|
logger = log.get(__name__) |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
def string_to_list(string: str) -> List[str]: |
|
24
|
|
|
""" |
|
25
|
|
|
Converts a comma separated string to a list of strings |
|
26
|
|
|
also removes leading or trailing spaces from each element in list. |
|
27
|
|
|
|
|
28
|
|
|
:param string: string which is to be converted to list |
|
29
|
|
|
:return: list of strings |
|
30
|
|
|
""" |
|
31
|
|
|
return [elem.strip() for elem in string.split(",")] |
|
32
|
|
|
|
|
33
|
|
|
|
|
34
|
|
|
def gif_slices(img_paths, save_path="", interval=50): |
|
35
|
|
|
""" |
|
36
|
|
|
Generates and saves gif of slices of image |
|
37
|
|
|
supports multiple images to generate multiple gif files. |
|
38
|
|
|
|
|
39
|
|
|
:param img_paths: list or comma separated string of image paths |
|
40
|
|
|
:param save_path: path to directory where visualisation/s is/are to be saved |
|
41
|
|
|
:param interval: time in miliseconds between frames of gif |
|
42
|
|
|
""" |
|
43
|
|
|
if type(img_paths) is str: |
|
44
|
|
|
img_paths = string_to_list(img_paths) |
|
45
|
|
|
img = load_nifti_file(img_paths[0]) |
|
46
|
|
|
img_shape = np.shape(img) |
|
47
|
|
|
for img_path in img_paths: |
|
48
|
|
|
fig = plt.figure() |
|
49
|
|
|
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0]) |
|
50
|
|
|
ax.set_axis_off() |
|
51
|
|
|
fig.add_axes(ax) |
|
52
|
|
|
|
|
53
|
|
|
img = load_nifti_file(img_path) |
|
54
|
|
|
|
|
55
|
|
|
frames = [] |
|
56
|
|
|
for index in range(img_shape[-1]): |
|
57
|
|
|
frame = plt.imshow(img[:, :, index], aspect="auto", animated=True) |
|
58
|
|
|
# plt.axis('off') |
|
59
|
|
|
frames.append([frame]) |
|
60
|
|
|
|
|
61
|
|
|
anim = animation.ArtistAnimation(fig, frames, interval=interval) |
|
62
|
|
|
|
|
63
|
|
|
path_to_anim_save = os.path.join( |
|
64
|
|
|
save_path, os.path.split(img_path)[-1].split(".")[0] + ".gif" |
|
65
|
|
|
) |
|
66
|
|
|
|
|
67
|
|
|
anim.save(path_to_anim_save) |
|
68
|
|
|
logger.info("Animation saved to: %s.", path_to_anim_save) |
|
69
|
|
|
|
|
70
|
|
|
|
|
71
|
|
|
def tile_slices(img_paths, save_path="", fname=None, slice_inds=None, col_titles=None): |
|
72
|
|
|
""" |
|
73
|
|
|
Generate a tiled plot of multiple images for multiple slices in the image. |
|
74
|
|
|
Rows are different slices, columns are different images. |
|
75
|
|
|
|
|
76
|
|
|
:param img_paths: list or comma separated string of image paths |
|
77
|
|
|
:param save_path: path to directory where visualisation/s is/are to be saved |
|
78
|
|
|
:param fname: file name with extension to save visualisation to |
|
79
|
|
|
:param slice_inds: list of slice indices to plot for each image |
|
80
|
|
|
:param col_titles: titles for each column, if None then inferred from file names |
|
81
|
|
|
""" |
|
82
|
|
|
if type(img_paths) is str: |
|
83
|
|
|
img_paths = string_to_list(img_paths) |
|
84
|
|
|
img = load_nifti_file(img_paths[0]) |
|
85
|
|
|
img_shape = np.shape(img) |
|
86
|
|
|
|
|
87
|
|
|
if slice_inds is None: |
|
88
|
|
|
slice_inds = [round(np.random.rand() * (img_shape[-1]) - 1)] |
|
89
|
|
|
|
|
90
|
|
|
if col_titles is None: |
|
91
|
|
|
col_titles = [ |
|
92
|
|
|
os.path.split(img_path)[-1].split(".")[0] for img_path in img_paths |
|
93
|
|
|
] |
|
94
|
|
|
|
|
95
|
|
|
num_inds = len(slice_inds) |
|
96
|
|
|
num_imgs = len(img_paths) |
|
97
|
|
|
|
|
98
|
|
|
subplot_mat = np.array(np.arange(num_inds * num_imgs) + 1).reshape( |
|
99
|
|
|
num_inds, num_imgs |
|
100
|
|
|
) |
|
101
|
|
|
|
|
102
|
|
|
plt.figure(figsize=(num_imgs * 2, num_inds * 2)) |
|
103
|
|
|
|
|
104
|
|
|
imgs = [load_nifti_file(p) for p in img_paths] |
|
105
|
|
|
|
|
106
|
|
|
for col_num, img in enumerate(imgs): |
|
107
|
|
|
for row_num, index in enumerate(slice_inds): |
|
108
|
|
|
plt.subplot(num_inds, num_imgs, subplot_mat[row_num, col_num]) |
|
109
|
|
|
plt.imshow(img[:, :, index]) |
|
110
|
|
|
plt.axis("off") |
|
111
|
|
|
if row_num - 0 < 1e-3: |
|
112
|
|
|
plt.title(col_titles[col_num]) |
|
113
|
|
|
|
|
114
|
|
|
if fname is None: |
|
115
|
|
|
fname = "visualisation.png" |
|
116
|
|
|
save_fig_to = os.path.join(save_path, fname) |
|
117
|
|
|
plt.savefig(save_fig_to) |
|
118
|
|
|
logger.info("Plot saved to: %s", save_fig_to) |
|
119
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
def gif_warp( |
|
122
|
|
|
img_paths, ddf_path, slice_inds=None, num_interval=100, interval=50, save_path="" |
|
123
|
|
|
): |
|
124
|
|
|
""" |
|
125
|
|
|
Apply ddf to image slice/s to generate gif. |
|
126
|
|
|
|
|
127
|
|
|
:param img_paths: list or comma separated string of image paths |
|
128
|
|
|
:param ddf_path: path to ddf to use for warping |
|
129
|
|
|
:param slice_inds: list of slice indices to use for each image |
|
130
|
|
|
:param num_interval: number of intervals in which to apply ddf |
|
131
|
|
|
:param interval: time in miliseconds between frames of gif |
|
132
|
|
|
:param save_path: path to directory where visualisation/s is/are to be saved |
|
133
|
|
|
""" |
|
134
|
|
|
if type(img_paths) is str: |
|
135
|
|
|
img_paths = string_to_list(img_paths) |
|
136
|
|
|
|
|
137
|
|
|
image = load_nifti_file(img_paths[0]) |
|
138
|
|
|
img_shape = np.shape(image) |
|
139
|
|
|
|
|
140
|
|
|
if slice_inds is None: |
|
141
|
|
|
slice_inds = [round(np.random.rand() * (img_shape[-1]) - 1)] |
|
142
|
|
|
|
|
143
|
|
|
for img_path in img_paths: |
|
144
|
|
|
for slice_ind in slice_inds: |
|
145
|
|
|
|
|
146
|
|
|
fig = plt.figure() |
|
147
|
|
|
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0]) |
|
148
|
|
|
ax.set_axis_off() |
|
149
|
|
|
fig.add_axes(ax) |
|
150
|
|
|
|
|
151
|
|
|
ddf_scalers = np.linspace(0, 1, num=num_interval) |
|
152
|
|
|
|
|
153
|
|
|
frames = [] |
|
154
|
|
|
for ddf_scaler in ddf_scalers: |
|
155
|
|
|
image = load_nifti_file(img_path) |
|
156
|
|
|
ddf = load_nifti_file(ddf_path) |
|
157
|
|
|
fixed_image_shape = ddf.shape[:3] |
|
158
|
|
|
image = np.expand_dims(image, axis=0) |
|
159
|
|
|
ddf = np.expand_dims(ddf, axis=0) * ddf_scaler |
|
160
|
|
|
|
|
161
|
|
|
warped_image = Warping(fixed_image_size=fixed_image_shape)([ddf, image]) |
|
162
|
|
|
warped_image = np.squeeze(warped_image.numpy()) |
|
163
|
|
|
|
|
164
|
|
|
frame = plt.imshow( |
|
165
|
|
|
warped_image[:, :, slice_ind], aspect="auto", animated=True |
|
166
|
|
|
) |
|
167
|
|
|
|
|
168
|
|
|
frames.append([frame]) |
|
169
|
|
|
|
|
170
|
|
|
anim = animation.ArtistAnimation(fig, frames, interval=interval) |
|
171
|
|
|
path_to_anim_save = os.path.join( |
|
172
|
|
|
save_path, |
|
173
|
|
|
os.path.split(img_path)[-1].split(".")[0] |
|
174
|
|
|
+ "_slice_" |
|
175
|
|
|
+ str(slice_ind) |
|
176
|
|
|
+ ".gif", |
|
177
|
|
|
) |
|
178
|
|
|
|
|
179
|
|
|
anim.save(path_to_anim_save) |
|
180
|
|
|
logger.info("Animation saved to: %s", path_to_anim_save) |
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
def gif_tile_slices(img_paths, save_path=None, size=(2, 2), fname=None, interval=50): |
|
184
|
|
|
""" |
|
185
|
|
|
Creates tiled gif over slices of multiple images. |
|
186
|
|
|
|
|
187
|
|
|
:param img_paths: list or comma separated string of image paths |
|
188
|
|
|
:param save_path: path to directory where visualisation/s is/are to be saved |
|
189
|
|
|
:param interval: time in miliseconds between frames of gif |
|
190
|
|
|
:param size: number of columns and rows of images for the tiled gif |
|
191
|
|
|
(tuple e.g. (2,2)) |
|
192
|
|
|
:param fname: filename to save visualisation to |
|
193
|
|
|
""" |
|
194
|
|
|
if type(img_paths) is str: |
|
195
|
|
|
img_paths = string_to_list(img_paths) |
|
196
|
|
|
|
|
197
|
|
|
num_images = np.prod(size) |
|
198
|
|
|
if int(len(img_paths)) != int(num_images): |
|
199
|
|
|
raise ValueError( |
|
200
|
|
|
"The number of images supplied is " |
|
201
|
|
|
+ str(len(img_paths)) |
|
202
|
|
|
+ " whereas the number required is " |
|
203
|
|
|
+ str(np.prod(size)) |
|
204
|
|
|
+ " as size specified is " |
|
205
|
|
|
+ str(size) |
|
206
|
|
|
) |
|
207
|
|
|
|
|
208
|
|
|
img = load_nifti_file(img_paths[0]) |
|
209
|
|
|
img_shape = np.shape(img) |
|
210
|
|
|
|
|
211
|
|
|
imgs = [] |
|
212
|
|
|
for img_path in img_paths: |
|
213
|
|
|
img = load_nifti_file(img_path) |
|
214
|
|
|
shape = np.shape(img) |
|
215
|
|
|
if shape != img_shape: |
|
216
|
|
|
raise ValueError("all images do not have equal shapes") |
|
217
|
|
|
imgs.append(img) |
|
218
|
|
|
|
|
219
|
|
|
frames = [] |
|
220
|
|
|
|
|
221
|
|
|
fig = plt.figure() |
|
222
|
|
|
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0]) |
|
223
|
|
|
ax.set_axis_off() |
|
224
|
|
|
fig.add_axes(ax) |
|
225
|
|
|
|
|
226
|
|
|
for index in range(img_shape[-1]): |
|
227
|
|
|
|
|
228
|
|
|
temp_tiles = [] |
|
229
|
|
|
frame = np.matlib.repmat( |
|
230
|
|
|
np.ones((img_shape[0], img_shape[1])), size[0], size[1] |
|
231
|
|
|
) |
|
232
|
|
|
|
|
233
|
|
|
for img in imgs: |
|
234
|
|
|
temp_tile = img[:, :, index] |
|
235
|
|
|
temp_tiles.append(temp_tile) |
|
236
|
|
|
|
|
237
|
|
|
tile_count = 0 |
|
238
|
|
|
for i in range(size[0]): |
|
239
|
|
|
for j in range(size[1]): |
|
240
|
|
|
tile = temp_tiles[tile_count] |
|
241
|
|
|
tile_count += 1 |
|
242
|
|
|
frame[ |
|
243
|
|
|
i * img_shape[0] : (i + 1) * img_shape[0], |
|
244
|
|
|
j * img_shape[0] : (j + 1) * img_shape[0], |
|
245
|
|
|
] = tile |
|
246
|
|
|
|
|
247
|
|
|
frame = plt.imshow(frame, aspect="auto", animated=True) |
|
248
|
|
|
|
|
249
|
|
|
frames.append([frame]) |
|
250
|
|
|
|
|
251
|
|
|
if fname is None: |
|
252
|
|
|
fname = "visualisation.gif" |
|
253
|
|
|
|
|
254
|
|
|
anim = animation.ArtistAnimation(fig, frames, interval=interval) |
|
255
|
|
|
path_to_anim_save = os.path.join(save_path, fname) |
|
256
|
|
|
|
|
257
|
|
|
anim.save(path_to_anim_save) |
|
258
|
|
|
logger.info("Animation saved to: %s", path_to_anim_save) |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
def main(args=None): |
|
262
|
|
|
""" |
|
263
|
|
|
CLI for deepreg_vis tool. |
|
264
|
|
|
|
|
265
|
|
|
Requires ffmpeg wirter to write gif files. |
|
266
|
|
|
|
|
267
|
|
|
:param args: |
|
268
|
|
|
""" |
|
269
|
|
|
parser = argparse.ArgumentParser( |
|
270
|
|
|
description="deepreg_vis", formatter_class=argparse.RawTextHelpFormatter |
|
271
|
|
|
) |
|
272
|
|
|
|
|
273
|
|
|
parser.add_argument( |
|
274
|
|
|
"--mode", |
|
275
|
|
|
"-m", |
|
276
|
|
|
help="Mode of visualisation \n" |
|
277
|
|
|
"0 for animtion over image slices, \n" |
|
278
|
|
|
"1 for warp animation, \n" |
|
279
|
|
|
"2 for tile plot", |
|
280
|
|
|
type=int, |
|
281
|
|
|
required=True, |
|
282
|
|
|
) |
|
283
|
|
|
parser.add_argument( |
|
284
|
|
|
"--image-paths", |
|
285
|
|
|
"-i", |
|
286
|
|
|
help="File path for image file " |
|
287
|
|
|
"(can specify multiple paths using a comma separated string)", |
|
288
|
|
|
type=str, |
|
289
|
|
|
required=True, |
|
290
|
|
|
) |
|
291
|
|
|
parser.add_argument( |
|
292
|
|
|
"--save-path", |
|
293
|
|
|
"-s", |
|
294
|
|
|
help="Path to directory where resulting visualisation is saved", |
|
295
|
|
|
default="", |
|
296
|
|
|
) |
|
297
|
|
|
|
|
298
|
|
|
parser.add_argument( |
|
299
|
|
|
"--interval", |
|
300
|
|
|
help="Interval between frames of animation (in miliseconds)\n" |
|
301
|
|
|
"Applicable only if --mode 0 or --mode 1 or --mode 3", |
|
302
|
|
|
type=int, |
|
303
|
|
|
default=50, |
|
304
|
|
|
) |
|
305
|
|
|
parser.add_argument( |
|
306
|
|
|
"--ddf-path", |
|
307
|
|
|
help="Path to ddf used for warping images\n" |
|
308
|
|
|
"Applicable only and required if --mode 1", |
|
309
|
|
|
type=str, |
|
310
|
|
|
default=None, |
|
311
|
|
|
) |
|
312
|
|
|
parser.add_argument( |
|
313
|
|
|
"--num-interval", |
|
314
|
|
|
help="Number of intervals to use for warping\n" "Applicable only if --mode 1", |
|
315
|
|
|
type=int, |
|
316
|
|
|
default=100, |
|
317
|
|
|
) |
|
318
|
|
|
parser.add_argument( |
|
319
|
|
|
"--slice-inds", |
|
320
|
|
|
help="Comma separated string of indexes of slices" |
|
321
|
|
|
" to be used for the visualisation\n" |
|
322
|
|
|
"Applicable only if --mode 1 or --mode 2", |
|
323
|
|
|
type=str, |
|
324
|
|
|
default=None, |
|
325
|
|
|
) |
|
326
|
|
|
parser.add_argument( |
|
327
|
|
|
"--fname", |
|
328
|
|
|
help="File name (with extension like .png, .jpeg, .gif, ...)" |
|
329
|
|
|
" to save visualisation to\n" |
|
330
|
|
|
"Applicable only if --mode 2 or --mode 3", |
|
331
|
|
|
type=str, |
|
332
|
|
|
default=None, |
|
333
|
|
|
) |
|
334
|
|
|
parser.add_argument( |
|
335
|
|
|
"--col-titles", |
|
336
|
|
|
help="Comma separated string of column titles to use " |
|
337
|
|
|
"(inferred from file names if not provided)\n" |
|
338
|
|
|
"Applicable only if --mode 2", |
|
339
|
|
|
default=None, |
|
340
|
|
|
) |
|
341
|
|
|
parser.add_argument( |
|
342
|
|
|
"--size", |
|
343
|
|
|
help="Comma separated string of number of columns and rows (e.g. '2,2')\n" |
|
344
|
|
|
"Applicable only if --mode 3", |
|
345
|
|
|
default="2,2", |
|
346
|
|
|
) |
|
347
|
|
|
|
|
348
|
|
|
# init arguments |
|
349
|
|
|
args = parser.parse_args(args) |
|
350
|
|
|
|
|
351
|
|
|
if args.slice_inds is not None: |
|
352
|
|
|
args.slice_inds = string_to_list(args.slice_inds) |
|
353
|
|
|
args.slice_inds = [int(elem) for elem in args.slice_inds] |
|
354
|
|
|
|
|
355
|
|
|
if args.mode == 0: |
|
356
|
|
|
gif_slices( |
|
357
|
|
|
img_paths=args.image_paths, save_path=args.save_path, interval=args.interval |
|
358
|
|
|
) |
|
359
|
|
|
elif args.mode == 1: |
|
360
|
|
|
if args.ddf_path is None: |
|
361
|
|
|
raise Exception("--ddf-path is required when using --mode 1") |
|
362
|
|
|
gif_warp( |
|
363
|
|
|
img_paths=args.image_paths, |
|
364
|
|
|
ddf_path=args.ddf_path, |
|
365
|
|
|
slice_inds=args.slice_inds, |
|
366
|
|
|
num_interval=args.num_interval, |
|
367
|
|
|
interval=args.interval, |
|
368
|
|
|
save_path=args.save_path, |
|
369
|
|
|
) |
|
370
|
|
|
elif args.mode == 2: |
|
371
|
|
|
tile_slices( |
|
372
|
|
|
img_paths=args.image_paths, |
|
373
|
|
|
save_path=args.save_path, |
|
374
|
|
|
fname=args.fname, |
|
375
|
|
|
slice_inds=args.slice_inds, |
|
376
|
|
|
col_titles=args.col_titles, |
|
377
|
|
|
) |
|
378
|
|
|
elif args.mode == 3: |
|
379
|
|
|
size = tuple([int(elem) for elem in string_to_list(args.size)]) |
|
380
|
|
|
gif_tile_slices( |
|
381
|
|
|
img_paths=args.image_paths, |
|
382
|
|
|
save_path=args.save_path, |
|
383
|
|
|
fname=args.fname, |
|
384
|
|
|
interval=args.interval, |
|
385
|
|
|
size=size, |
|
386
|
|
|
) |
|
387
|
|
|
|
|
388
|
|
|
|
|
389
|
|
|
if __name__ == "__main__": |
|
390
|
|
|
main() # pragma: no cover |
|
391
|
|
|
|