1
|
|
|
"""This module defines custom layers."""
|
2
|
|
|
import itertools
|
3
|
|
|
from typing import List, Tuple, Union
|
4
|
|
|
|
5
|
|
|
import numpy as np
|
6
|
|
|
import tensorflow as tf
|
7
|
|
|
import tensorflow.keras.layers as tfkl
|
8
|
|
|
|
9
|
|
|
from deepreg.model import layer_util
|
10
|
|
|
|
11
|
|
|
LAYER_DICT = dict(conv3d=tfkl.Conv3D, deconv3d=tfkl.Conv3DTranspose)
|
12
|
|
|
NORM_DICT = dict(batch=tfkl.BatchNormalization, layer=tfkl.LayerNormalization)
|
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class NormBlock(tfkl.Layer):
|
16
|
|
|
"""
|
17
|
|
|
A block with layer - norm - activation.
|
18
|
|
|
"""
|
19
|
|
|
|
20
|
|
|
def __init__(
|
21
|
|
|
self,
|
22
|
|
|
layer_name: str,
|
23
|
|
|
norm_name: str = "batch",
|
24
|
|
|
activation: str = "relu",
|
25
|
|
|
name: str = "norm_block",
|
26
|
|
|
**kwargs,
|
27
|
|
|
):
|
28
|
|
|
"""
|
29
|
|
|
Init.
|
30
|
|
|
|
31
|
|
|
:param layer_name: class of the layer to be wrapped.
|
32
|
|
|
:param norm_name: class of the normalization layer.
|
33
|
|
|
:param activation: name of activation.
|
34
|
|
|
:param name: name of the block layer.
|
35
|
|
|
:param kwargs: additional arguments.
|
36
|
|
|
"""
|
37
|
|
|
super().__init__()
|
38
|
|
|
self._config = dict(
|
39
|
|
|
layer_name=layer_name,
|
40
|
|
|
norm_name=norm_name,
|
41
|
|
|
activation=activation,
|
42
|
|
|
name=name,
|
43
|
|
|
**kwargs,
|
44
|
|
|
)
|
45
|
|
|
self._layer = LAYER_DICT[layer_name](use_bias=False, **kwargs)
|
46
|
|
|
self._norm = NORM_DICT[norm_name]()
|
47
|
|
|
self._act = tfkl.Activation(activation=activation)
|
48
|
|
|
|
49
|
|
|
def call(self, inputs, training=None, **kwargs) -> tf.Tensor:
|
50
|
|
|
"""
|
51
|
|
|
Forward.
|
52
|
|
|
|
53
|
|
|
:param inputs: inputs for the layer
|
54
|
|
|
:param training: training flag for normalization layers (default: None)
|
55
|
|
|
:param kwargs: additional arguments.
|
56
|
|
|
:return:
|
57
|
|
|
"""
|
58
|
|
|
output = self._layer(inputs=inputs)
|
59
|
|
|
output = self._norm(inputs=output, training=training)
|
60
|
|
|
output = self._act(output)
|
61
|
|
|
return output
|
62
|
|
|
|
63
|
|
|
def get_config(self) -> dict:
|
64
|
|
|
"""Return the config dictionary for recreating this class."""
|
65
|
|
|
config = super().get_config()
|
66
|
|
|
config.update(self._config)
|
67
|
|
|
return config
|
68
|
|
|
|
69
|
|
|
|
70
|
|
|
class Conv3dBlock(NormBlock):
|
71
|
|
|
"""
|
72
|
|
|
A conv3d block having conv3d - norm - activation.
|
73
|
|
|
"""
|
74
|
|
|
|
75
|
|
|
def __init__(
|
76
|
|
|
self,
|
77
|
|
|
name: str = "conv3d_block",
|
78
|
|
|
**kwargs,
|
79
|
|
|
):
|
80
|
|
|
"""
|
81
|
|
|
Init.
|
82
|
|
|
|
83
|
|
|
:param name: name of the layer
|
84
|
|
|
:param kwargs: additional arguments.
|
85
|
|
|
"""
|
86
|
|
|
super().__init__(layer_name="conv3d", name=name, **kwargs)
|
87
|
|
|
|
88
|
|
|
|
89
|
|
|
class Deconv3dBlock(NormBlock):
|
90
|
|
|
"""
|
91
|
|
|
A deconv3d block having conv3d - norm - activation.
|
92
|
|
|
"""
|
93
|
|
|
|
94
|
|
|
def __init__(
|
95
|
|
|
self,
|
96
|
|
|
name: str = "deconv3d_block",
|
97
|
|
|
**kwargs,
|
98
|
|
|
):
|
99
|
|
|
"""
|
100
|
|
|
Init.
|
101
|
|
|
|
102
|
|
|
:param name: name of the layer
|
103
|
|
|
:param kwargs: additional arguments.
|
104
|
|
|
"""
|
105
|
|
|
super().__init__(layer_name="deconv3d", name=name, **kwargs)
|
106
|
|
|
|
107
|
|
|
|
108
|
|
|
class Resize3d(tfkl.Layer):
|
109
|
|
|
"""
|
110
|
|
|
Resize image in two folds.
|
111
|
|
|
|
112
|
|
|
- resize dim2 and dim3
|
113
|
|
|
- resize dim1 and dim2
|
114
|
|
|
"""
|
115
|
|
|
|
116
|
|
|
def __init__(
|
117
|
|
|
self,
|
118
|
|
|
shape: tuple,
|
119
|
|
|
method: str = tf.image.ResizeMethod.BILINEAR,
|
120
|
|
|
name: str = "resize3d",
|
121
|
|
|
):
|
122
|
|
|
"""
|
123
|
|
|
Init, save arguments.
|
124
|
|
|
|
125
|
|
|
:param shape: (dim1, dim2, dim3)
|
126
|
|
|
:param method: tf.image.ResizeMethod
|
127
|
|
|
:param name: name of the layer
|
128
|
|
|
"""
|
129
|
|
|
super().__init__(name=name)
|
130
|
|
|
assert len(shape) == 3
|
131
|
|
|
self._shape = shape
|
132
|
|
|
self._method = method
|
133
|
|
|
|
134
|
|
|
def call(self, inputs: tf.Tensor, **kwargs) -> tf.Tensor:
|
135
|
|
|
"""
|
136
|
|
|
Perform two fold resize.
|
137
|
|
|
|
138
|
|
|
:param inputs: shape = (batch, dim1, dim2, dim3, channels)
|
139
|
|
|
or (batch, dim1, dim2, dim3)
|
140
|
|
|
or (dim1, dim2, dim3)
|
141
|
|
|
:param kwargs: additional arguments
|
142
|
|
|
:return: shape = (batch, out_dim1, out_dim2, out_dim3, channels)
|
143
|
|
|
or (batch, dim1, dim2, dim3)
|
144
|
|
|
or (dim1, dim2, dim3)
|
145
|
|
|
"""
|
146
|
|
|
# sanity check
|
147
|
|
|
image = inputs
|
148
|
|
|
image_dim = len(image.shape)
|
149
|
|
|
|
150
|
|
|
# init
|
151
|
|
|
if image_dim == 5:
|
152
|
|
|
has_channel = True
|
153
|
|
|
has_batch = True
|
154
|
|
|
input_image_shape = image.shape[1:4]
|
155
|
|
|
elif image_dim == 4:
|
156
|
|
|
has_channel = False
|
157
|
|
|
has_batch = True
|
158
|
|
|
input_image_shape = image.shape[1:4]
|
159
|
|
|
elif image_dim == 3:
|
160
|
|
|
has_channel = False
|
161
|
|
|
has_batch = False
|
162
|
|
|
input_image_shape = image.shape[0:3]
|
163
|
|
|
else:
|
164
|
|
|
raise ValueError(
|
165
|
|
|
"Resize3d takes input image of dimension 3 or 4 or 5, "
|
166
|
|
|
"corresponding to (dim1, dim2, dim3) "
|
167
|
|
|
"or (batch, dim1, dim2, dim3) "
|
168
|
|
|
"or (batch, dim1, dim2, dim3, channels), "
|
169
|
|
|
"got image shape{}".format(image.shape)
|
170
|
|
|
)
|
171
|
|
|
|
172
|
|
|
# no need of resize
|
173
|
|
|
if input_image_shape == tuple(self._shape):
|
174
|
|
|
return image
|
175
|
|
|
|
176
|
|
|
# expand to five dimensions
|
177
|
|
|
if not has_batch:
|
178
|
|
|
image = tf.expand_dims(image, axis=0)
|
179
|
|
|
if not has_channel:
|
180
|
|
|
image = tf.expand_dims(image, axis=-1)
|
181
|
|
|
assert len(image.shape) == 5 # (batch, dim1, dim2, dim3, channels)
|
182
|
|
|
image_shape = tf.shape(image)
|
183
|
|
|
|
184
|
|
|
# merge axis 0 and 1
|
185
|
|
|
output = tf.reshape(
|
186
|
|
|
image, (-1, image_shape[2], image_shape[3], image_shape[4])
|
187
|
|
|
) # (batch * dim1, dim2, dim3, channels)
|
188
|
|
|
|
189
|
|
|
# resize dim2 and dim3
|
190
|
|
|
output = tf.image.resize(
|
191
|
|
|
images=output, size=self._shape[1:3], method=self._method
|
192
|
|
|
) # (batch * dim1, out_dim2, out_dim3, channels)
|
193
|
|
|
|
194
|
|
|
# split axis 0 and merge axis 3 and 4
|
195
|
|
|
output = tf.reshape(
|
196
|
|
|
output,
|
197
|
|
|
shape=(-1, image_shape[1], self._shape[1], self._shape[2] * image_shape[4]),
|
198
|
|
|
) # (batch, dim1, out_dim2, out_dim3 * channels)
|
199
|
|
|
|
200
|
|
|
# resize dim1 and dim2
|
201
|
|
|
output = tf.image.resize(
|
202
|
|
|
images=output, size=self._shape[:2], method=self._method
|
203
|
|
|
) # (batch, out_dim1, out_dim2, out_dim3 * channels)
|
204
|
|
|
|
205
|
|
|
# reshape
|
206
|
|
|
output = tf.reshape(
|
207
|
|
|
output, shape=[-1, *self._shape, image_shape[4]]
|
208
|
|
|
) # (batch, out_dim1, out_dim2, out_dim3, channels)
|
209
|
|
|
|
210
|
|
|
# squeeze to original dimension
|
211
|
|
|
if not has_batch:
|
212
|
|
|
output = tf.squeeze(output, axis=0)
|
213
|
|
|
if not has_channel:
|
214
|
|
|
output = tf.squeeze(output, axis=-1)
|
215
|
|
|
return output
|
216
|
|
|
|
217
|
|
|
def get_config(self) -> dict:
|
218
|
|
|
"""Return the config dictionary for recreating this class."""
|
219
|
|
|
config = super().get_config()
|
220
|
|
|
config["shape"] = self._shape
|
221
|
|
|
config["method"] = self._method
|
222
|
|
|
return config
|
223
|
|
|
|
224
|
|
|
|
225
|
|
|
class Warping(tfkl.Layer):
|
226
|
|
|
"""
|
227
|
|
|
Warps an image with DDF.
|
228
|
|
|
|
229
|
|
|
Reference:
|
230
|
|
|
|
231
|
|
|
https://github.com/adalca/neurite/blob/legacy/neuron/utils.py
|
232
|
|
|
where vol = image, loc_shift = ddf
|
233
|
|
|
"""
|
234
|
|
|
|
235
|
|
|
def __init__(self, fixed_image_size: tuple, name: str = "warping", **kwargs):
|
236
|
|
|
"""
|
237
|
|
|
Init.
|
238
|
|
|
|
239
|
|
|
:param fixed_image_size: shape = (f_dim1, f_dim2, f_dim3)
|
240
|
|
|
or (f_dim1, f_dim2, f_dim3, ch) with the last channel for features
|
241
|
|
|
:param name: name of the layer
|
242
|
|
|
:param kwargs: additional arguments.
|
243
|
|
|
"""
|
244
|
|
|
super().__init__(name=name, **kwargs)
|
245
|
|
|
self._fixed_image_size = fixed_image_size
|
246
|
|
|
# shape = (1, f_dim1, f_dim2, f_dim3, 3)
|
247
|
|
|
self.grid_ref = layer_util.get_reference_grid(grid_size=fixed_image_size)[
|
248
|
|
|
None, ...
|
249
|
|
|
]
|
250
|
|
|
|
251
|
|
|
def call(self, inputs, **kwargs) -> tf.Tensor:
|
252
|
|
|
"""
|
253
|
|
|
:param inputs: (ddf, image)
|
254
|
|
|
|
255
|
|
|
- ddf, shape = (batch, f_dim1, f_dim2, f_dim3, 3)
|
256
|
|
|
- image, shape = (batch, m_dim1, m_dim2, m_dim3)
|
257
|
|
|
:param kwargs: additional arguments.
|
258
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3)
|
259
|
|
|
"""
|
260
|
|
|
ddf, image = inputs
|
261
|
|
|
return layer_util.resample(vol=image, loc=self.grid_ref + ddf)
|
262
|
|
|
|
263
|
|
|
def get_config(self) -> dict:
|
264
|
|
|
"""Return the config dictionary for recreating this class."""
|
265
|
|
|
config = super().get_config()
|
266
|
|
|
config["fixed_image_size"] = self._fixed_image_size
|
267
|
|
|
return config
|
268
|
|
|
|
269
|
|
|
|
270
|
|
|
class ResidualBlock(tfkl.Layer):
|
271
|
|
|
"""
|
272
|
|
|
A block with skip links and layer - norm - activation.
|
273
|
|
|
"""
|
274
|
|
|
|
275
|
|
|
def __init__(
|
276
|
|
|
self,
|
277
|
|
|
layer_name: str,
|
278
|
|
|
num_layers: int = 2,
|
279
|
|
|
norm_name: str = "batch",
|
280
|
|
|
activation: str = "relu",
|
281
|
|
|
name: str = "res_block",
|
282
|
|
|
**kwargs,
|
283
|
|
|
):
|
284
|
|
|
"""
|
285
|
|
|
Init.
|
286
|
|
|
|
287
|
|
|
:param layer_name: class of the layer to be wrapped.
|
288
|
|
|
:param num_layers: number of layers/blocks.
|
289
|
|
|
:param norm_name: class of the normalization layer.
|
290
|
|
|
:param activation: name of activation.
|
291
|
|
|
:param name: name of the block layer.
|
292
|
|
|
:param kwargs: additional arguments.
|
293
|
|
|
"""
|
294
|
|
|
super().__init__()
|
295
|
|
|
self._num_layers = num_layers
|
296
|
|
|
self._config = dict(
|
297
|
|
|
layer_name=layer_name,
|
298
|
|
|
num_layers=num_layers,
|
299
|
|
|
norm_name=norm_name,
|
300
|
|
|
activation=activation,
|
301
|
|
|
name=name,
|
302
|
|
|
**kwargs,
|
303
|
|
|
)
|
304
|
|
|
self._layers = [
|
305
|
|
|
LAYER_DICT[layer_name](use_bias=False, **kwargs) for _ in range(num_layers)
|
306
|
|
|
]
|
307
|
|
|
self._norms = [NORM_DICT[norm_name]() for _ in range(num_layers)]
|
308
|
|
|
self._acts = [tfkl.Activation(activation=activation) for _ in range(num_layers)]
|
309
|
|
|
|
310
|
|
|
def call(self, inputs, training=None, **kwargs) -> tf.Tensor:
|
311
|
|
|
"""
|
312
|
|
|
Forward.
|
313
|
|
|
|
314
|
|
|
:param inputs: inputs for the layer
|
315
|
|
|
:param training: training flag for normalization layers (default: None)
|
316
|
|
|
:param kwargs: additional arguments.
|
317
|
|
|
:return:
|
318
|
|
|
"""
|
319
|
|
|
|
320
|
|
|
output = inputs
|
321
|
|
|
for i in range(self._num_layers):
|
322
|
|
|
output = self._layers[i](inputs=output)
|
323
|
|
|
output = self._norms[i](inputs=output, training=training)
|
324
|
|
|
if i == self._num_layers - 1:
|
325
|
|
|
# last block
|
326
|
|
|
output = output + inputs
|
327
|
|
|
output = self._acts[i](output)
|
328
|
|
|
return output
|
329
|
|
|
|
330
|
|
|
def get_config(self) -> dict:
|
331
|
|
|
"""Return the config dictionary for recreating this class."""
|
332
|
|
|
config = super().get_config()
|
333
|
|
|
config.update(self._config)
|
334
|
|
|
return config
|
335
|
|
|
|
336
|
|
|
|
337
|
|
|
class ResidualConv3dBlock(ResidualBlock):
|
338
|
|
|
"""
|
339
|
|
|
A conv3d residual block
|
340
|
|
|
"""
|
341
|
|
|
|
342
|
|
|
def __init__(
|
343
|
|
|
self,
|
344
|
|
|
name: str = "conv3d_res_block",
|
345
|
|
|
**kwargs,
|
346
|
|
|
):
|
347
|
|
|
"""
|
348
|
|
|
Init.
|
349
|
|
|
|
350
|
|
|
:param name: name of the layer
|
351
|
|
|
:param kwargs: additional arguments.
|
352
|
|
|
"""
|
353
|
|
|
super().__init__(layer_name="conv3d", name=name, **kwargs)
|
354
|
|
|
|
355
|
|
|
|
356
|
|
|
class IntDVF(tfkl.Layer):
|
357
|
|
|
"""
|
358
|
|
|
Integrate DVF to get DDF.
|
359
|
|
|
|
360
|
|
|
Reference:
|
361
|
|
|
|
362
|
|
|
- integrate_vec of neuron
|
363
|
|
|
https://github.com/adalca/neurite/blob/legacy/neuron/utils.py
|
364
|
|
|
"""
|
365
|
|
|
|
366
|
|
|
def __init__(
|
367
|
|
|
self,
|
368
|
|
|
fixed_image_size: tuple,
|
369
|
|
|
num_steps: int = 7,
|
370
|
|
|
name: str = "int_dvf",
|
371
|
|
|
**kwargs,
|
372
|
|
|
):
|
373
|
|
|
"""
|
374
|
|
|
Init.
|
375
|
|
|
|
376
|
|
|
:param fixed_image_size: tuple, (f_dim1, f_dim2, f_dim3)
|
377
|
|
|
:param num_steps: int, number of steps for integration
|
378
|
|
|
:param name: name of the layer
|
379
|
|
|
:param kwargs: additional arguments.
|
380
|
|
|
"""
|
381
|
|
|
super().__init__(name=name, **kwargs)
|
382
|
|
|
assert len(fixed_image_size) == 3
|
383
|
|
|
self._fixed_image_size = fixed_image_size
|
384
|
|
|
self._num_steps = num_steps
|
385
|
|
|
self._warping = Warping(fixed_image_size=fixed_image_size)
|
386
|
|
|
|
387
|
|
|
def call(self, inputs: tf.Tensor, **kwargs) -> tf.Tensor:
|
388
|
|
|
"""
|
389
|
|
|
:param inputs: dvf, shape = (batch, f_dim1, f_dim2, f_dim3, 3)
|
390
|
|
|
:param kwargs: additional arguments.
|
391
|
|
|
:return: ddf, shape = (batch, f_dim1, f_dim2, f_dim3, 3)
|
392
|
|
|
"""
|
393
|
|
|
ddf = inputs / (2 ** self._num_steps)
|
394
|
|
|
for _ in range(self._num_steps):
|
395
|
|
|
ddf += self._warping(inputs=[ddf, ddf])
|
396
|
|
|
return ddf
|
397
|
|
|
|
398
|
|
|
def get_config(self) -> dict:
|
399
|
|
|
"""Return the config dictionary for recreating this class."""
|
400
|
|
|
config = super().get_config()
|
401
|
|
|
config["fixed_image_size"] = self._fixed_image_size
|
402
|
|
|
config["num_steps"] = self._num_steps
|
403
|
|
|
return config
|
404
|
|
|
|
405
|
|
|
|
406
|
|
|
class ResizeCPTransform(tfkl.Layer):
|
407
|
|
|
"""
|
408
|
|
|
Layer for getting the control points from the output of a image-to-image network.
|
409
|
|
|
It uses an anti-aliasing Gaussian filter before down-sampling.
|
410
|
|
|
"""
|
411
|
|
|
|
412
|
|
|
def __init__(
|
413
|
|
|
self, control_point_spacing: Union[List[int], Tuple[int, ...], int], **kwargs
|
414
|
|
|
):
|
415
|
|
|
"""
|
416
|
|
|
:param control_point_spacing: list or int
|
417
|
|
|
:param kwargs: additional arguments.
|
418
|
|
|
"""
|
419
|
|
|
super().__init__(**kwargs)
|
420
|
|
|
|
421
|
|
|
if isinstance(control_point_spacing, int):
|
422
|
|
|
control_point_spacing = [control_point_spacing] * 3
|
423
|
|
|
|
424
|
|
|
self.kernel_sigma = [
|
425
|
|
|
0.44 * cp for cp in control_point_spacing
|
426
|
|
|
] # 0.44 = ln(4)/pi
|
427
|
|
|
self.cp_spacing = control_point_spacing
|
428
|
|
|
self.kernel = None
|
429
|
|
|
self._output_shape = None
|
430
|
|
|
self._resize = None
|
431
|
|
|
|
432
|
|
|
def build(self, input_shape):
|
433
|
|
|
super().build(input_shape=input_shape)
|
434
|
|
|
|
435
|
|
|
self.kernel = layer_util.gaussian_filter_3d(self.kernel_sigma)
|
436
|
|
|
output_shape = tuple(
|
437
|
|
|
tf.cast(tf.math.ceil(v / c) + 3, tf.int32)
|
438
|
|
|
for v, c in zip(input_shape[1:-1], self.cp_spacing)
|
439
|
|
|
)
|
440
|
|
|
self._output_shape = output_shape
|
441
|
|
|
self._resize = Resize3d(output_shape)
|
442
|
|
|
|
443
|
|
|
def call(self, inputs, **kwargs) -> tf.Tensor:
|
444
|
|
|
output = tf.nn.conv3d(
|
445
|
|
|
inputs, self.kernel, strides=(1, 1, 1, 1, 1), padding="SAME"
|
446
|
|
|
)
|
447
|
|
|
output = self._resize(inputs=output) # type: ignore
|
448
|
|
|
return output
|
449
|
|
|
|
450
|
|
|
|
451
|
|
|
class BSplines3DTransform(tfkl.Layer):
|
452
|
|
|
"""
|
453
|
|
|
Layer for BSplines interpolation with precomputed cubic spline kernel_size.
|
454
|
|
|
It assumes a full sized image from which:
|
455
|
|
|
1. it compute the contol points values by down-sampling the initial image
|
456
|
|
|
2. performs the interpolation
|
457
|
|
|
3. crops the image around the valid values.
|
458
|
|
|
"""
|
459
|
|
|
|
460
|
|
|
def __init__(
|
461
|
|
|
self,
|
462
|
|
|
cp_spacing: Union[Tuple[int, ...], int],
|
463
|
|
|
output_shape: Tuple[int, ...],
|
464
|
|
|
**kwargs,
|
465
|
|
|
):
|
466
|
|
|
"""
|
467
|
|
|
Init.
|
468
|
|
|
|
469
|
|
|
:param cp_spacing: int or tuple of three ints specifying the spacing (in pixels)
|
470
|
|
|
in each dimension. When a single int is used,
|
471
|
|
|
the same spacing to all dimensions is used
|
472
|
|
|
:param output_shape: (batch_size, dim0, dim1, dim2, 3) of the high resolution
|
473
|
|
|
deformation fields.
|
474
|
|
|
:param kwargs: additional arguments.
|
475
|
|
|
"""
|
476
|
|
|
super().__init__(**kwargs)
|
477
|
|
|
|
478
|
|
|
self._output_shape = output_shape
|
479
|
|
|
if isinstance(cp_spacing, int):
|
480
|
|
|
cp_spacing = (cp_spacing, cp_spacing, cp_spacing)
|
481
|
|
|
self.cp_spacing = cp_spacing
|
482
|
|
|
|
483
|
|
|
def build(self, input_shape: tuple):
|
484
|
|
|
"""
|
485
|
|
|
:param input_shape: tuple with the input shape
|
486
|
|
|
:return: None
|
487
|
|
|
"""
|
488
|
|
|
|
489
|
|
|
super().build(input_shape=input_shape)
|
490
|
|
|
|
491
|
|
|
b = {
|
492
|
|
|
0: lambda u: np.float64((1 - u) ** 3 / 6),
|
493
|
|
|
1: lambda u: np.float64((3 * (u ** 3) - 6 * (u ** 2) + 4) / 6),
|
494
|
|
|
2: lambda u: np.float64((-3 * (u ** 3) + 3 * (u ** 2) + 3 * u + 1) / 6),
|
495
|
|
|
3: lambda u: np.float64(u ** 3 / 6),
|
496
|
|
|
}
|
497
|
|
|
|
498
|
|
|
filters = np.zeros(
|
499
|
|
|
(
|
500
|
|
|
4 * self.cp_spacing[0],
|
501
|
|
|
4 * self.cp_spacing[1],
|
502
|
|
|
4 * self.cp_spacing[2],
|
503
|
|
|
3,
|
504
|
|
|
3,
|
505
|
|
|
),
|
506
|
|
|
dtype=np.float32,
|
507
|
|
|
)
|
508
|
|
|
|
509
|
|
|
u_arange = 1 - np.arange(
|
510
|
|
|
1 / (2 * self.cp_spacing[0]), 1, 1 / self.cp_spacing[0]
|
511
|
|
|
)
|
512
|
|
|
v_arange = 1 - np.arange(
|
513
|
|
|
1 / (2 * self.cp_spacing[1]), 1, 1 / self.cp_spacing[1]
|
514
|
|
|
)
|
515
|
|
|
w_arange = 1 - np.arange(
|
516
|
|
|
1 / (2 * self.cp_spacing[2]), 1, 1 / self.cp_spacing[2]
|
517
|
|
|
)
|
518
|
|
|
|
519
|
|
|
filter_idx = [[0, 1, 2, 3] for _ in range(3)]
|
520
|
|
|
filter_coord = list(itertools.product(*filter_idx))
|
521
|
|
|
|
522
|
|
|
for f_idx in filter_coord:
|
523
|
|
|
for it_dim in range(3):
|
524
|
|
|
filters[
|
525
|
|
|
f_idx[0] * self.cp_spacing[0] : (f_idx[0] + 1) * self.cp_spacing[0],
|
526
|
|
|
f_idx[1] * self.cp_spacing[1] : (f_idx[1] + 1) * self.cp_spacing[1],
|
527
|
|
|
f_idx[2] * self.cp_spacing[2] : (f_idx[2] + 1) * self.cp_spacing[2],
|
528
|
|
|
it_dim,
|
529
|
|
|
it_dim,
|
530
|
|
|
] = (
|
531
|
|
|
b[f_idx[0]](u_arange)[:, None, None]
|
532
|
|
|
* b[f_idx[1]](v_arange)[None, :, None]
|
533
|
|
|
* b[f_idx[2]](w_arange)[None, None, :]
|
534
|
|
|
)
|
535
|
|
|
|
536
|
|
|
self.filter = tf.convert_to_tensor(filters)
|
537
|
|
|
|
538
|
|
|
def interpolate(self, field) -> tf.Tensor:
|
539
|
|
|
"""
|
540
|
|
|
:param field: tf.Tensor with shape=number_of_control_points_per_dim
|
541
|
|
|
:return: interpolated_field: tf.Tensor
|
542
|
|
|
"""
|
543
|
|
|
|
544
|
|
|
image_shape = tuple(
|
545
|
|
|
[(a - 1) * b + 4 * b for a, b in zip(field.shape[1:-1], self.cp_spacing)]
|
546
|
|
|
)
|
547
|
|
|
|
548
|
|
|
output_shape = (field.shape[0],) + image_shape + (3,)
|
549
|
|
|
return tf.nn.conv3d_transpose(
|
550
|
|
|
field,
|
551
|
|
|
self.filter,
|
552
|
|
|
output_shape=output_shape,
|
553
|
|
|
strides=self.cp_spacing,
|
554
|
|
|
padding="VALID",
|
555
|
|
|
)
|
556
|
|
|
|
557
|
|
|
def call(self, inputs, **kwargs) -> tf.Tensor:
|
558
|
|
|
"""
|
559
|
|
|
:param inputs: tf.Tensor defining a low resolution free-form deformation field
|
560
|
|
|
:param kwargs: additional arguments.
|
561
|
|
|
:return: interpolated_field: tf.Tensor of shape=self.input_shape
|
562
|
|
|
"""
|
563
|
|
|
high_res_field = self.interpolate(inputs)
|
564
|
|
|
|
565
|
|
|
index = [int(3 * c) for c in self.cp_spacing]
|
566
|
|
|
return high_res_field[
|
567
|
|
|
:,
|
568
|
|
|
index[0] : index[0] + self._output_shape[0],
|
569
|
|
|
index[1] : index[1] + self._output_shape[1],
|
570
|
|
|
index[2] : index[2] + self._output_shape[2],
|
571
|
|
|
]
|
572
|
|
|
|
573
|
|
|
|
574
|
|
|
class Extraction(tfkl.Layer):
|
575
|
|
|
def __init__(
|
576
|
|
|
self,
|
577
|
|
|
image_size: Tuple[int, ...],
|
578
|
|
|
extract_levels: Tuple[int, ...],
|
579
|
|
|
out_channels: int,
|
580
|
|
|
out_kernel_initializer: str,
|
581
|
|
|
out_activation: str,
|
582
|
|
|
name: str = "Extraction",
|
583
|
|
|
):
|
584
|
|
|
"""
|
585
|
|
|
:param image_size: such as (dim1, dim2, dim3)
|
586
|
|
|
:param extract_levels: number of extraction levels.
|
587
|
|
|
:param out_channels: number of channels for the extractions
|
588
|
|
|
:param out_kernel_initializer: initializer to use for kernels.
|
589
|
|
|
:param out_activation: activation to use at end layer.
|
590
|
|
|
:param name: name of the layer
|
591
|
|
|
"""
|
592
|
|
|
super().__init__(name=name)
|
593
|
|
|
self.extract_levels = extract_levels
|
594
|
|
|
self.max_level = max(extract_levels)
|
595
|
|
|
self.layers = [
|
596
|
|
|
tf.keras.Sequential(
|
597
|
|
|
[
|
598
|
|
|
tfkl.Conv3D(
|
599
|
|
|
filters=out_channels,
|
600
|
|
|
kernel_size=3,
|
601
|
|
|
strides=1,
|
602
|
|
|
padding="same",
|
603
|
|
|
kernel_initializer=out_kernel_initializer,
|
604
|
|
|
activation=out_activation,
|
605
|
|
|
),
|
606
|
|
|
Resize3d(shape=image_size),
|
607
|
|
|
]
|
608
|
|
|
)
|
609
|
|
|
for _ in extract_levels
|
610
|
|
|
]
|
611
|
|
|
|
612
|
|
|
def call(self, inputs: List[tf.Tensor], **kwargs) -> tf.Tensor:
|
613
|
|
|
"""
|
614
|
|
|
Calculate the mean over some selected inputs.
|
615
|
|
|
|
616
|
|
|
:param inputs: a list of tensors
|
617
|
|
|
:param kwargs:
|
618
|
|
|
:return:
|
619
|
|
|
"""
|
620
|
|
|
outputs = [
|
621
|
|
|
self.layers[idx](inputs=inputs[self.max_level - level])
|
622
|
|
|
for idx, level in enumerate(self.extract_levels)
|
623
|
|
|
]
|
624
|
|
|
if len(self.extract_levels) == 1:
|
625
|
|
|
return outputs[0]
|
626
|
|
|
return tf.add_n(outputs) / len(self.extract_levels)
|
627
|
|
|
|