1
|
|
|
""" |
2
|
|
|
Module containing data augmentation techniques. |
3
|
|
|
- 3D Affine/DDF Transforms for moving and fixed images. |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
from abc import abstractmethod |
7
|
|
|
from typing import Dict, List, Optional, Tuple, Union |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
import tensorflow as tf |
11
|
|
|
|
12
|
|
|
from deepreg.model.layer import Resize3d |
13
|
|
|
from deepreg.model.layer_util import get_reference_grid, resample, warp_grid |
14
|
|
|
from deepreg.registry import REGISTRY |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class RandomTransformation3D(tf.keras.layers.Layer): |
18
|
|
|
""" |
19
|
|
|
An interface for different types of transformation. |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
def __init__( |
23
|
|
|
self, |
24
|
|
|
moving_image_size: Tuple[int, ...], |
25
|
|
|
fixed_image_size: Tuple[int, ...], |
26
|
|
|
batch_size: int, |
27
|
|
|
name: str = "RandomTransformation3D", |
28
|
|
|
trainable: bool = False, |
29
|
|
|
): |
30
|
|
|
""" |
31
|
|
|
Abstract class for image transformation. |
32
|
|
|
|
33
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
34
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
35
|
|
|
:param batch_size: total number of samples consumed per step, over all devices. |
36
|
|
|
:param name: name of layer |
37
|
|
|
:param trainable: if this layer is trainable |
38
|
|
|
""" |
39
|
|
|
super().__init__(trainable=trainable, name=name) |
40
|
|
|
self.moving_image_size = moving_image_size |
41
|
|
|
self.fixed_image_size = fixed_image_size |
42
|
|
|
self.batch_size = batch_size |
43
|
|
|
self.moving_grid_ref = get_reference_grid(grid_size=moving_image_size) |
44
|
|
|
self.fixed_grid_ref = get_reference_grid(grid_size=fixed_image_size) |
45
|
|
|
|
46
|
|
|
@abstractmethod |
47
|
|
|
def gen_transform_params(self) -> Tuple[tf.Tensor, tf.Tensor]: |
48
|
|
|
""" |
49
|
|
|
Generates transformation parameters for moving and fixed image. |
50
|
|
|
|
51
|
|
|
:return: two tensors |
52
|
|
|
""" |
53
|
|
|
|
54
|
|
|
@staticmethod |
55
|
|
|
@abstractmethod |
56
|
|
|
def transform( |
57
|
|
|
image: tf.Tensor, grid_ref: tf.Tensor, params: tf.Tensor |
58
|
|
|
) -> tf.Tensor: |
59
|
|
|
""" |
60
|
|
|
Transforms the reference grid and then resample the image. |
61
|
|
|
|
62
|
|
|
:param image: shape = (batch, dim1, dim2, dim3) |
63
|
|
|
:param grid_ref: shape = (dim1, dim2, dim3, 3) |
64
|
|
|
:param params: parameters for transformation |
65
|
|
|
:return: shape = (batch, dim1, dim2, dim3) |
66
|
|
|
""" |
67
|
|
|
|
68
|
|
|
def call(self, inputs: Dict[str, tf.Tensor], **kwargs) -> Dict[str, tf.Tensor]: |
69
|
|
|
""" |
70
|
|
|
Creates random params for the input images and their labels, |
71
|
|
|
and params them based on the resampled reference grids. |
72
|
|
|
:param inputs: a dict having multiple tensors |
73
|
|
|
if labeled: |
74
|
|
|
moving_image, shape = (batch, m_dim1, m_dim2, m_dim3) |
75
|
|
|
fixed_image, shape = (batch, f_dim1, f_dim2, f_dim3) |
76
|
|
|
moving_label, shape = (batch, m_dim1, m_dim2, m_dim3) |
77
|
|
|
fixed_label, shape = (batch, f_dim1, f_dim2, f_dim3) |
78
|
|
|
indices, shape = (batch, num_indices) |
79
|
|
|
else, unlabeled: |
80
|
|
|
moving_image, shape = (batch, m_dim1, m_dim2, m_dim3) |
81
|
|
|
fixed_image, shape = (batch, f_dim1, f_dim2, f_dim3) |
82
|
|
|
indices, shape = (batch, num_indices) |
83
|
|
|
:param kwargs: other arguments |
84
|
|
|
:return: dictionary with the same structure as inputs |
85
|
|
|
""" |
86
|
|
|
|
87
|
|
|
moving_image = inputs["moving_image"] |
88
|
|
|
fixed_image = inputs["fixed_image"] |
89
|
|
|
indices = inputs["indices"] |
90
|
|
|
|
91
|
|
|
moving_params, fixed_params = self.gen_transform_params() |
92
|
|
|
|
93
|
|
|
moving_image = self.transform(moving_image, self.moving_grid_ref, moving_params) |
94
|
|
|
fixed_image = self.transform(fixed_image, self.fixed_grid_ref, fixed_params) |
95
|
|
|
|
96
|
|
|
if "moving_label" not in inputs: # unlabeled |
97
|
|
|
return dict( |
98
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
99
|
|
|
) |
100
|
|
|
moving_label = inputs["moving_label"] |
101
|
|
|
fixed_label = inputs["fixed_label"] |
102
|
|
|
|
103
|
|
|
moving_label = self.transform(moving_label, self.moving_grid_ref, moving_params) |
104
|
|
|
fixed_label = self.transform(fixed_label, self.fixed_grid_ref, fixed_params) |
105
|
|
|
|
106
|
|
|
return dict( |
107
|
|
|
moving_image=moving_image, |
108
|
|
|
fixed_image=fixed_image, |
109
|
|
|
moving_label=moving_label, |
110
|
|
|
fixed_label=fixed_label, |
111
|
|
|
indices=indices, |
112
|
|
|
) |
113
|
|
|
|
114
|
|
|
def get_config(self) -> dict: |
115
|
|
|
"""Return the config dictionary for recreating this class.""" |
116
|
|
|
config = super().get_config() |
117
|
|
|
config["moving_image_size"] = self.moving_image_size |
118
|
|
|
config["fixed_image_size"] = self.fixed_image_size |
119
|
|
|
config["batch_size"] = self.batch_size |
120
|
|
|
return config |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
@REGISTRY.register_data_augmentation(name="affine") |
124
|
|
|
class RandomAffineTransform3D(RandomTransformation3D): |
125
|
|
|
"""Apply random affine transformation to moving/fixed images separately.""" |
126
|
|
|
|
127
|
|
|
def __init__( |
128
|
|
|
self, |
129
|
|
|
moving_image_size: Tuple[int, ...], |
130
|
|
|
fixed_image_size: Tuple[int, ...], |
131
|
|
|
batch_size: int, |
132
|
|
|
scale: float = 0.1, |
133
|
|
|
name: str = "RandomAffineTransform3D", |
134
|
|
|
**kwargs, |
135
|
|
|
): |
136
|
|
|
""" |
137
|
|
|
Init. |
138
|
|
|
|
139
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
140
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
141
|
|
|
:param batch_size: total number of samples consumed per step, over all devices. |
142
|
|
|
:param scale: a positive float controlling the scale of transformation |
143
|
|
|
:param name: name of the layer |
144
|
|
|
:param kwargs: additional arguments |
145
|
|
|
""" |
146
|
|
|
super().__init__( |
147
|
|
|
moving_image_size=moving_image_size, |
148
|
|
|
fixed_image_size=fixed_image_size, |
149
|
|
|
batch_size=batch_size, |
150
|
|
|
name=name, |
151
|
|
|
**kwargs, |
152
|
|
|
) |
153
|
|
|
self.scale = scale |
154
|
|
|
|
155
|
|
|
def get_config(self) -> dict: |
156
|
|
|
"""Return the config dictionary for recreating this class.""" |
157
|
|
|
config = super().get_config() |
158
|
|
|
config["scale"] = self.scale |
159
|
|
|
return config |
160
|
|
|
|
161
|
|
|
def gen_transform_params(self) -> Tuple[tf.Tensor, tf.Tensor]: |
162
|
|
|
""" |
163
|
|
|
Function that generates the random 3D transformation parameters |
164
|
|
|
for a batch of data for moving and fixed image. |
165
|
|
|
|
166
|
|
|
:return: a tuple of tensors, each has shape = (batch, 4, 3) |
167
|
|
|
""" |
168
|
|
|
theta = gen_rand_affine_transform( |
169
|
|
|
batch_size=self.batch_size * 2, scale=self.scale |
170
|
|
|
) |
171
|
|
|
return theta[: self.batch_size], theta[self.batch_size :] |
172
|
|
|
|
173
|
|
|
@staticmethod |
174
|
|
|
def transform( |
175
|
|
|
image: tf.Tensor, grid_ref: tf.Tensor, params: tf.Tensor |
176
|
|
|
) -> tf.Tensor: |
177
|
|
|
""" |
178
|
|
|
Transforms the reference grid and then resample the image. |
179
|
|
|
|
180
|
|
|
:param image: shape = (batch, dim1, dim2, dim3) |
181
|
|
|
:param grid_ref: shape = (dim1, dim2, dim3, 3) |
182
|
|
|
:param params: shape = (batch, 4, 3) |
183
|
|
|
:return: shape = (batch, dim1, dim2, dim3) |
184
|
|
|
""" |
185
|
|
|
return resample(vol=image, loc=warp_grid(grid_ref, params)) |
186
|
|
|
|
187
|
|
|
|
188
|
|
|
@REGISTRY.register_data_augmentation(name="ddf") |
189
|
|
|
class RandomDDFTransform3D(RandomTransformation3D): |
190
|
|
|
"""Apply random DDF transformation to moving/fixed images separately.""" |
191
|
|
|
|
192
|
|
|
def __init__( |
193
|
|
|
self, |
194
|
|
|
moving_image_size: Tuple[int, ...], |
195
|
|
|
fixed_image_size: Tuple[int, ...], |
196
|
|
|
batch_size: int, |
197
|
|
|
field_strength: int = 1, |
198
|
|
|
low_res_size: tuple = (1, 1, 1), |
199
|
|
|
name: str = "RandomDDFTransform3D", |
200
|
|
|
**kwargs, |
201
|
|
|
): |
202
|
|
|
""" |
203
|
|
|
Creates a DDF transformation for data augmentation. |
204
|
|
|
|
205
|
|
|
To simulate smooth deformation fields, we interpolate from a low resolution |
206
|
|
|
field of size low_res_size using linear interpolation. The variance of the |
207
|
|
|
deformation field is drawn from a uniform variable |
208
|
|
|
between [0, field_strength]. |
209
|
|
|
|
210
|
|
|
:param moving_image_size: tuple |
211
|
|
|
:param fixed_image_size: tuple |
212
|
|
|
:param batch_size: total number of samples consumed per step, over all devices. |
213
|
|
|
:param field_strength: int = 1. It is used as the upper bound for the |
214
|
|
|
deformation field variance |
215
|
|
|
:param low_res_size: tuple = (1, 1, 1). |
216
|
|
|
:param name: name of layer |
217
|
|
|
:param kwargs: additional arguments |
218
|
|
|
""" |
219
|
|
|
|
220
|
|
|
super().__init__( |
221
|
|
|
moving_image_size=moving_image_size, |
222
|
|
|
fixed_image_size=fixed_image_size, |
223
|
|
|
batch_size=batch_size, |
224
|
|
|
name=name, |
225
|
|
|
**kwargs, |
226
|
|
|
) |
227
|
|
|
|
228
|
|
|
assert tuple(low_res_size) <= tuple(moving_image_size) |
229
|
|
|
assert tuple(low_res_size) <= tuple(fixed_image_size) |
230
|
|
|
|
231
|
|
|
self.field_strength = field_strength |
232
|
|
|
self.low_res_size = low_res_size |
233
|
|
|
|
234
|
|
|
def get_config(self) -> dict: |
235
|
|
|
"""Return the config dictionary for recreating this class.""" |
236
|
|
|
config = super().get_config() |
237
|
|
|
config["field_strength"] = self.field_strength |
238
|
|
|
config["low_res_size"] = self.low_res_size |
239
|
|
|
return config |
240
|
|
|
|
241
|
|
|
def gen_transform_params(self) -> Tuple[tf.Tensor, tf.Tensor]: |
242
|
|
|
""" |
243
|
|
|
Generates two random ddf fields for moving and fixed images. |
244
|
|
|
|
245
|
|
|
:return: tuple, one has shape = (batch, m_dim1, m_dim2, m_dim3, 3) |
246
|
|
|
another one has shape = (batch, f_dim1, f_dim2, f_dim3, 3) |
247
|
|
|
""" |
248
|
|
|
moving = gen_rand_ddf( |
249
|
|
|
image_size=self.moving_image_size, |
250
|
|
|
batch_size=self.batch_size, |
251
|
|
|
field_strength=self.field_strength, |
252
|
|
|
low_res_size=self.low_res_size, |
253
|
|
|
) |
254
|
|
|
fixed = gen_rand_ddf( |
255
|
|
|
image_size=self.fixed_image_size, |
256
|
|
|
batch_size=self.batch_size, |
257
|
|
|
field_strength=self.field_strength, |
258
|
|
|
low_res_size=self.low_res_size, |
259
|
|
|
) |
260
|
|
|
return moving, fixed |
261
|
|
|
|
262
|
|
|
@staticmethod |
263
|
|
|
def transform( |
264
|
|
|
image: tf.Tensor, grid_ref: tf.Tensor, params: tf.Tensor |
265
|
|
|
) -> tf.Tensor: |
266
|
|
|
""" |
267
|
|
|
Transforms the reference grid and then resample the image. |
268
|
|
|
|
269
|
|
|
:param image: shape = (batch, dim1, dim2, dim3) |
270
|
|
|
:param grid_ref: shape = (dim1, dim2, dim3, 3) |
271
|
|
|
:param params: DDF, shape = (batch, dim1, dim2, dim3, 3) |
272
|
|
|
:return: shape = (batch, dim1, dim2, dim3) |
273
|
|
|
""" |
274
|
|
|
return resample(vol=image, loc=grid_ref[None, ...] + params) |
275
|
|
|
|
276
|
|
|
|
277
|
|
|
def resize_inputs( |
278
|
|
|
inputs: Dict[str, tf.Tensor], |
279
|
|
|
moving_image_size: Tuple[int, ...], |
280
|
|
|
fixed_image_size: tuple, |
281
|
|
|
) -> Dict[str, tf.Tensor]: |
282
|
|
|
""" |
283
|
|
|
Resize inputs |
284
|
|
|
:param inputs: |
285
|
|
|
if labeled: |
286
|
|
|
moving_image, shape = (None, None, None) |
287
|
|
|
fixed_image, shape = (None, None, None) |
288
|
|
|
moving_label, shape = (None, None, None) |
289
|
|
|
fixed_label, shape = (None, None, None) |
290
|
|
|
indices, shape = (num_indices, ) |
291
|
|
|
else, unlabeled: |
292
|
|
|
moving_image, shape = (None, None, None) |
293
|
|
|
fixed_image, shape = (None, None, None) |
294
|
|
|
indices, shape = (num_indices, ) |
295
|
|
|
:param moving_image_size: Tuple[int, ...], (m_dim1, m_dim2, m_dim3) |
296
|
|
|
:param fixed_image_size: Tuple[int, ...], (f_dim1, f_dim2, f_dim3) |
297
|
|
|
:return: |
298
|
|
|
if labeled: |
299
|
|
|
moving_image, shape = (m_dim1, m_dim2, m_dim3) |
300
|
|
|
fixed_image, shape = (f_dim1, f_dim2, f_dim3) |
301
|
|
|
moving_label, shape = (m_dim1, m_dim2, m_dim3) |
302
|
|
|
fixed_label, shape = (f_dim1, f_dim2, f_dim3) |
303
|
|
|
indices, shape = (num_indices, ) |
304
|
|
|
else, unlabeled: |
305
|
|
|
moving_image, shape = (m_dim1, m_dim2, m_dim3) |
306
|
|
|
fixed_image, shape = (f_dim1, f_dim2, f_dim3) |
307
|
|
|
indices, shape = (num_indices, ) |
308
|
|
|
""" |
309
|
|
|
moving_image = inputs["moving_image"] |
310
|
|
|
fixed_image = inputs["fixed_image"] |
311
|
|
|
indices = inputs["indices"] |
312
|
|
|
|
313
|
|
|
moving_resize_layer = Resize3d(shape=moving_image_size) |
314
|
|
|
fixed_resize_layer = Resize3d(shape=fixed_image_size) |
315
|
|
|
|
316
|
|
|
moving_image = moving_resize_layer(moving_image) |
317
|
|
|
fixed_image = fixed_resize_layer(fixed_image) |
318
|
|
|
|
319
|
|
|
if "moving_label" not in inputs: # unlabeled |
320
|
|
|
return dict(moving_image=moving_image, fixed_image=fixed_image, indices=indices) |
321
|
|
|
moving_label = inputs["moving_label"] |
322
|
|
|
fixed_label = inputs["fixed_label"] |
323
|
|
|
|
324
|
|
|
moving_label = moving_resize_layer(moving_label) |
325
|
|
|
fixed_label = fixed_resize_layer(fixed_label) |
326
|
|
|
|
327
|
|
|
return dict( |
328
|
|
|
moving_image=moving_image, |
329
|
|
|
fixed_image=fixed_image, |
330
|
|
|
moving_label=moving_label, |
331
|
|
|
fixed_label=fixed_label, |
332
|
|
|
indices=indices, |
333
|
|
|
) |
334
|
|
|
|
335
|
|
|
|
336
|
|
|
def gen_rand_affine_transform( |
337
|
|
|
batch_size: int, scale: float, seed: Optional[int] = None |
338
|
|
|
) -> tf.Tensor: |
339
|
|
|
""" |
340
|
|
|
Function that generates a random 3D transformation parameters for a batch of data. |
341
|
|
|
|
342
|
|
|
for 3D coordinates, affine transformation is |
343
|
|
|
|
344
|
|
|
.. code-block:: text |
345
|
|
|
|
346
|
|
|
[[x' y' z' 1]] = [[x y z 1]] * [[* * * 0] |
347
|
|
|
[* * * 0] |
348
|
|
|
[* * * 0] |
349
|
|
|
[* * * 1]] |
350
|
|
|
|
351
|
|
|
where each * represents a degree of freedom, |
352
|
|
|
so there are in total 12 degrees of freedom |
353
|
|
|
the equation can be denoted as |
354
|
|
|
|
355
|
|
|
new = old * T |
356
|
|
|
|
357
|
|
|
where |
358
|
|
|
|
359
|
|
|
- new is the transformed coordinates, of shape (1, 4) |
360
|
|
|
- old is the original coordinates, of shape (1, 4) |
361
|
|
|
- T is the transformation matrix, of shape (4, 4) |
362
|
|
|
|
363
|
|
|
the equation can be simplified to |
364
|
|
|
|
365
|
|
|
.. code-block:: text |
366
|
|
|
|
367
|
|
|
[[x' y' z']] = [[x y z 1]] * [[* * *] |
368
|
|
|
[* * *] |
369
|
|
|
[* * *] |
370
|
|
|
[* * *]] |
371
|
|
|
|
372
|
|
|
so that |
373
|
|
|
|
374
|
|
|
new = old * T |
375
|
|
|
|
376
|
|
|
where |
377
|
|
|
|
378
|
|
|
- new is the transformed coordinates, of shape (1, 3) |
379
|
|
|
- old is the original coordinates, of shape (1, 4) |
380
|
|
|
- T is the transformation matrix, of shape (4, 3) |
381
|
|
|
|
382
|
|
|
Given original and transformed coordinates, |
383
|
|
|
we can calculate the transformation matrix using |
384
|
|
|
|
385
|
|
|
x = np.linalg.lstsq(a, b) |
386
|
|
|
|
387
|
|
|
such that |
388
|
|
|
|
389
|
|
|
a x = b |
390
|
|
|
|
391
|
|
|
In our case, |
392
|
|
|
|
393
|
|
|
- a = old |
394
|
|
|
- b = new |
395
|
|
|
- x = T |
396
|
|
|
|
397
|
|
|
To generate random transformation, |
398
|
|
|
we choose to add random perturbation to corner coordinates as follows: |
399
|
|
|
for corner of coordinates (x, y, z), the noise is |
400
|
|
|
|
401
|
|
|
-(x, y, z) .* (r1, r2, r3) |
402
|
|
|
|
403
|
|
|
where ri is a random number between (0, scale). |
404
|
|
|
So |
405
|
|
|
|
406
|
|
|
(x', y', z') = (x, y, z) .* (1-r1, 1-r2, 1-r3) |
407
|
|
|
|
408
|
|
|
Thus, we can directly sample between 1-scale and 1 instead |
409
|
|
|
|
410
|
|
|
We choose to calculate the transformation based on |
411
|
|
|
four corners in a cube centered at (0, 0, 0). |
412
|
|
|
A cube is shown as below, where |
413
|
|
|
|
414
|
|
|
- C = (-1, -1, -1) |
415
|
|
|
- G = (-1, -1, 1) |
416
|
|
|
- D = (-1, 1, -1) |
417
|
|
|
- A = (1, -1, -1) |
418
|
|
|
|
419
|
|
|
.. code-block:: text |
420
|
|
|
|
421
|
|
|
G — — — — — — — — H |
422
|
|
|
/ | / | |
423
|
|
|
/ | / | |
424
|
|
|
/ | / | |
425
|
|
|
/ | / | |
426
|
|
|
/ | / | |
427
|
|
|
E — — — — — — — — F | |
428
|
|
|
| | | | |
429
|
|
|
| | | | |
430
|
|
|
| C — — | — — — — — D |
431
|
|
|
| / | / |
432
|
|
|
| / | / |
433
|
|
|
| / | / |
434
|
|
|
| / | / |
435
|
|
|
| / | / |
436
|
|
|
A — — — — — — — — B |
437
|
|
|
|
438
|
|
|
:param batch_size: total number of samples consumed per step, over all devices. |
439
|
|
|
:param scale: a float number between 0 and 1 |
440
|
|
|
:param seed: control the randomness |
441
|
|
|
:return: shape = (batch, 4, 3) |
442
|
|
|
""" |
443
|
|
|
|
444
|
|
|
assert 0 <= scale <= 1 |
445
|
|
|
np.random.seed(seed) |
446
|
|
|
noise = np.random.uniform(1 - scale, 1, [batch_size, 4, 3]) # shape = (batch, 4, 3) |
447
|
|
|
|
448
|
|
|
# old represents four corners of a cube |
449
|
|
|
# corresponding to the corner C G D A as shown above |
450
|
|
|
old = np.tile( |
451
|
|
|
[[[-1, -1, -1, 1], [-1, -1, 1, 1], [-1, 1, -1, 1], [1, -1, -1, 1]]], |
452
|
|
|
[batch_size, 1, 1], |
453
|
|
|
) # shape = (batch, 4, 4) |
454
|
|
|
new = old[:, :, :3] * noise # shape = (batch, 4, 3) |
455
|
|
|
|
456
|
|
|
theta = np.array( |
457
|
|
|
[np.linalg.lstsq(old[k], new[k], rcond=-1)[0] for k in range(batch_size)] |
458
|
|
|
) # shape = (batch, 4, 3) |
459
|
|
|
|
460
|
|
|
return tf.cast(theta, dtype=tf.float32) |
461
|
|
|
|
462
|
|
|
|
463
|
|
|
def gen_rand_ddf( |
464
|
|
|
batch_size: int, |
465
|
|
|
image_size: Tuple[int, ...], |
466
|
|
|
field_strength: Union[Tuple, List, int, float], |
467
|
|
|
low_res_size: Union[Tuple, List], |
468
|
|
|
seed: Optional[int] = None, |
469
|
|
|
) -> tf.Tensor: |
470
|
|
|
""" |
471
|
|
|
Function that generates a random 3D DDF for a batch of data. |
472
|
|
|
|
473
|
|
|
:param batch_size: total number of samples consumed per step, over all devices. |
474
|
|
|
:param image_size: |
475
|
|
|
:param field_strength: maximum field strength, computed as a U[0,field_strength] |
476
|
|
|
:param low_res_size: low_resolution deformation field that will be upsampled to |
477
|
|
|
the original size in order to get smooth and more realistic fields. |
478
|
|
|
:param seed: control the randomness |
479
|
|
|
:return: |
480
|
|
|
""" |
481
|
|
|
|
482
|
|
|
np.random.seed(seed) |
483
|
|
|
low_res_strength = np.random.uniform(0, field_strength, (batch_size, 1, 1, 1, 3)) |
484
|
|
|
low_res_field = low_res_strength * np.random.randn( |
485
|
|
|
batch_size, low_res_size[0], low_res_size[1], low_res_size[2], 3 |
486
|
|
|
) |
487
|
|
|
high_res_field = Resize3d(shape=image_size)(low_res_field) |
488
|
|
|
return high_res_field |
489
|
|
|
|