1
|
|
|
from configparser import ConfigParser |
2
|
|
|
from typing import Any, Dict, Optional |
3
|
|
|
|
4
|
|
|
from pystratum_backend.StratumStyle import StratumStyle |
5
|
|
|
from pystratum_common.backend.CommonRoutineLoaderWorker import CommonRoutineLoaderWorker |
6
|
|
|
|
7
|
|
|
from pystratum_mssql.backend.MsSqlWorker import MsSqlWorker |
8
|
|
|
from pystratum_mssql.helper.MsSqlRoutineLoaderHelper import MsSqlRoutineLoaderHelper |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
class MsSqlRoutineLoaderWorker(MsSqlWorker, CommonRoutineLoaderWorker): |
12
|
|
|
""" |
13
|
|
|
Class for loading stored routines into a SQL Server instance from pseudo SQL files. |
14
|
|
|
""" |
15
|
|
|
|
16
|
|
|
# ------------------------------------------------------------------------------------------------------------------ |
17
|
|
|
def __init__(self, io: StratumStyle, config: ConfigParser): |
18
|
|
|
""" |
19
|
|
|
Object constructor. |
20
|
|
|
|
21
|
|
|
:param PyStratumStyle io: The output decorator. |
22
|
|
|
""" |
23
|
|
|
MsSqlWorker.__init__(self, io, config) |
24
|
|
|
CommonRoutineLoaderWorker.__init__(self, io, config) |
25
|
|
|
|
26
|
|
|
# ------------------------------------------------------------------------------------------------------------------ |
27
|
|
|
def _get_column_type(self) -> None: |
28
|
|
|
""" |
29
|
|
|
Selects schema, table, column names and the column types from the SQL Server instance and saves them as replace |
30
|
|
|
pairs. |
31
|
|
|
""" |
32
|
|
|
rows = self._dl.get_all_table_columns() |
33
|
|
|
for row in rows: |
34
|
|
|
key = '@{0}.{1}.{2}%type@'.format(row['schema_name'], row['table_name'], row['column_name']) |
35
|
|
|
key = key.lower() |
36
|
|
|
|
37
|
|
|
value = self._derive_data_type(row) |
38
|
|
|
|
39
|
|
|
self._replace_pairs[key] = value |
40
|
|
|
|
41
|
|
|
self._io.text('Selected {0} column types for substitution'.format(len(rows))) |
42
|
|
|
|
43
|
|
|
# ------------------------------------------------------------------------------------------------------------------ |
44
|
|
|
def create_routine_loader_helper(self, |
45
|
|
|
routine_name: str, |
46
|
|
|
pystratum_old_metadata: Optional[Dict], |
47
|
|
|
rdbms_old_metadata: Optional[Dict]) -> MsSqlRoutineLoaderHelper: |
48
|
|
|
""" |
49
|
|
|
Creates a Routine Loader Helper object. |
50
|
|
|
|
51
|
|
|
:param str routine_name: The name of the routine. |
52
|
|
|
:param dict pystratum_old_metadata: The old metadata of the stored routine from PyStratum. |
53
|
|
|
:param dict rdbms_old_metadata: The old metadata of the stored routine from MS SQL Server. |
54
|
|
|
|
55
|
|
|
:rtype: MsSqlRoutineLoaderHelper |
56
|
|
|
""" |
57
|
|
|
return MsSqlRoutineLoaderHelper(self._io, |
58
|
|
|
self._dl, |
59
|
|
|
self._source_file_names[routine_name], |
60
|
|
|
self._source_file_encoding, |
61
|
|
|
pystratum_old_metadata, |
62
|
|
|
self._replace_pairs, |
63
|
|
|
rdbms_old_metadata) |
64
|
|
|
|
65
|
|
|
# ------------------------------------------------------------------------------------------------------------------ |
66
|
|
|
def _get_old_stored_routine_info(self) -> None: |
67
|
|
|
""" |
68
|
|
|
Retrieves information about all stored routines. |
69
|
|
|
""" |
70
|
|
|
rows = self._dl.get_routines() |
71
|
|
|
self._rdbms_old_metadata = {} |
72
|
|
|
for row in rows: |
73
|
|
|
self._rdbms_old_metadata[row['schema_name'] + '.' + row['routine_name']] = row |
74
|
|
|
|
75
|
|
|
# ------------------------------------------------------------------------------------------------------------------ |
76
|
|
|
def _drop_obsolete_routines(self) -> None: |
77
|
|
|
""" |
78
|
|
|
Drops obsolete stored routines (i.e. stored routines that exits but for which we don't have a source file). |
79
|
|
|
""" |
80
|
|
|
for routine_name, values in self._rdbms_old_metadata.items(): |
81
|
|
|
if routine_name not in self._source_file_names: |
82
|
|
|
if values['routine_type'].strip() == 'P': |
83
|
|
|
routine_type = 'procedure' |
84
|
|
|
elif values['routine_type'].strip() in ('FN', 'TF'): |
85
|
|
|
routine_type = 'function' |
86
|
|
|
else: |
87
|
|
|
raise Exception("Unknown routine type '{0}'".format(values['routine_type'])) |
88
|
|
|
|
89
|
|
|
self._io.writeln("Dropping {0} <dbo>{1}.{2}</dbo>".format(routine_type, |
90
|
|
|
values['schema_name'], |
91
|
|
|
values['routine_name'])) |
92
|
|
|
self._dl.drop_stored_routine(routine_type, values['schema_name'], values['routine_name']) |
93
|
|
|
|
94
|
|
|
# ------------------------------------------------------------------------------------------------------------------ |
95
|
|
|
@staticmethod |
96
|
|
|
def _derive_data_type(column: Dict[str, Any]) -> str: |
97
|
|
|
""" |
98
|
|
|
Returns the proper SQL declaration of a data type of a column. |
99
|
|
|
|
100
|
|
|
:param dict column: The column of which the field is based. |
101
|
|
|
|
102
|
|
|
:rtype: str |
103
|
|
|
""" |
104
|
|
|
data_type = column['data_type'] |
105
|
|
|
|
106
|
|
|
if data_type == 'bigint': |
107
|
|
|
return data_type |
108
|
|
|
|
109
|
|
|
if data_type == 'int': |
110
|
|
|
return data_type |
111
|
|
|
|
112
|
|
|
if data_type == 'smallint': |
113
|
|
|
return data_type |
114
|
|
|
|
115
|
|
|
if data_type == 'tinyint': |
116
|
|
|
return data_type |
117
|
|
|
|
118
|
|
|
if data_type == 'bit': |
119
|
|
|
return data_type |
120
|
|
|
|
121
|
|
|
if data_type == 'money': |
122
|
|
|
return data_type |
123
|
|
|
|
124
|
|
|
if data_type == 'smallmoney': |
125
|
|
|
return data_type |
126
|
|
|
|
127
|
|
|
if data_type == 'decimal': |
128
|
|
|
return 'decimal({0:d},{1:d})'.format(column['precision'], column['scale']) |
129
|
|
|
|
130
|
|
|
if data_type == 'numeric': |
131
|
|
|
return 'decimal({0:d},{1:d})'.format(column['precision'], column['scale']) |
132
|
|
|
|
133
|
|
|
if data_type == 'float': |
134
|
|
|
return data_type |
135
|
|
|
|
136
|
|
|
if data_type == 'real': |
137
|
|
|
return data_type |
138
|
|
|
|
139
|
|
|
if data_type == 'date': |
140
|
|
|
return data_type |
141
|
|
|
|
142
|
|
|
if data_type == 'datetime': |
143
|
|
|
return data_type |
144
|
|
|
|
145
|
|
|
if data_type == 'datetime2': |
146
|
|
|
return data_type |
147
|
|
|
|
148
|
|
|
if data_type == 'datetimeoffset': |
149
|
|
|
return data_type |
150
|
|
|
|
151
|
|
|
if data_type == 'smalldatetime': |
152
|
|
|
return data_type |
153
|
|
|
|
154
|
|
|
if data_type == 'time': |
155
|
|
|
return data_type |
156
|
|
|
|
157
|
|
|
if data_type == 'char': |
158
|
|
|
return 'char({0:d})'.format(column['max_length']) |
159
|
|
|
|
160
|
|
|
if data_type == 'varchar': |
161
|
|
|
if column['max_length'] == -1: |
162
|
|
|
return 'varchar(max)' |
163
|
|
|
|
164
|
|
|
return 'varchar({0:d})'.format(column['max_length']) |
165
|
|
|
|
166
|
|
|
if data_type == 'text': |
167
|
|
|
return data_type |
168
|
|
|
|
169
|
|
|
if data_type == 'nchar': |
170
|
|
|
return 'nchar({0:d})'.format(int(column['max_length'] / 2)) |
171
|
|
|
|
172
|
|
|
if data_type == 'nvarchar': |
173
|
|
|
if column['max_length'] == -1: |
174
|
|
|
return 'nvarchar(max)' |
175
|
|
|
|
176
|
|
|
return 'nvarchar({0:d})'.format(int(column['max_length'] / 2)) |
177
|
|
|
|
178
|
|
|
if data_type == 'ntext': |
179
|
|
|
return data_type |
180
|
|
|
|
181
|
|
|
if data_type == 'binary': |
182
|
|
|
return data_type |
183
|
|
|
|
184
|
|
|
if data_type == 'varbinary': |
185
|
|
|
return 'varbinary({0:d})'.format(column['max_length']) |
186
|
|
|
|
187
|
|
|
if data_type == 'image': |
188
|
|
|
return data_type |
189
|
|
|
|
190
|
|
|
if data_type == 'xml': |
191
|
|
|
return data_type |
192
|
|
|
|
193
|
|
|
if data_type == 'geography': |
194
|
|
|
return data_type |
195
|
|
|
|
196
|
|
|
if data_type == 'geometry': |
197
|
|
|
return data_type |
198
|
|
|
|
199
|
|
|
if data_type == 'sysname': |
200
|
|
|
return data_type |
201
|
|
|
|
202
|
|
|
raise Exception("Unexpected data type '{0}'".format(data_type)) |
203
|
|
|
|
204
|
|
|
# ---------------------------------------------------------------------------------------------------------------------- |
205
|
|
|
|