1
|
|
|
#pylint: disable=W0223 |
2
|
|
|
|
3
|
1 |
|
""" |
4
|
|
|
Module used to process and load the input files to be evaluated with the CrowdTruth metrics. |
5
|
|
|
""" |
6
|
|
|
|
7
|
1 |
|
import os |
8
|
|
|
|
9
|
1 |
|
import logging |
10
|
1 |
|
import datetime |
11
|
|
|
|
12
|
1 |
|
from collections import Counter, OrderedDict |
13
|
|
|
|
14
|
1 |
|
import pandas as pd |
15
|
|
|
|
16
|
1 |
|
from crowdtruth.models.worker import Worker |
17
|
1 |
|
from crowdtruth.models.unit import Unit |
18
|
1 |
|
from crowdtruth.models.job import Job |
19
|
1 |
|
from crowdtruth.configuration import DefaultConfig |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
|
23
|
|
|
|
24
|
|
|
# create an ordered counter so that we can maintain |
25
|
|
|
# the position of tags in the order they were annotated |
26
|
1 |
|
class OrderedCounter(Counter, OrderedDict): |
27
|
|
|
""" Instantiates an ordered counter. """ |
28
|
1 |
|
pass |
29
|
|
|
|
30
|
1 |
|
def create_ordered_counter(ordered_counter, annotation_vector): |
31
|
|
|
""" Instantiates an ordered counter from a given annotation vector. """ |
32
|
1 |
|
for relation in annotation_vector: |
33
|
1 |
|
if relation not in ordered_counter: |
34
|
1 |
|
ordered_counter.update({relation: 0}) |
35
|
1 |
|
return ordered_counter |
36
|
|
|
|
37
|
|
|
|
38
|
1 |
|
class Found(Exception): |
39
|
|
|
""" Exception. """ |
40
|
1 |
|
pass |
41
|
|
|
|
42
|
1 |
|
def validate_timestamp_field(date_string, date_format): |
43
|
|
|
""" Validates the time columns (started time and submitted time) in input files. """ |
44
|
|
|
|
45
|
|
|
try: |
46
|
|
|
date_obj = datetime.datetime.strptime(date_string, date_format) |
47
|
|
|
print(date_obj) |
48
|
|
|
except ValueError: |
49
|
|
|
raise ValueError('Incorrect date format') |
50
|
|
|
|
51
|
1 |
|
def get_file_list(directory): |
52
|
|
|
""" List the files in the directry given as argument. """ |
53
|
|
|
filelist = [] |
54
|
|
|
|
55
|
|
|
# go through all files in this folder |
56
|
|
|
for file in os.listdir(directory): |
57
|
|
|
# if it is a folder scan it |
58
|
|
|
if os.path.isdir(directory+'/'+file): |
59
|
|
|
sublist = get_file_list(directory+'/'+file) |
60
|
|
|
sublist_length = len(sublist) |
61
|
|
|
if sublist_length: |
62
|
|
|
filelist.append(sublist) |
63
|
|
|
|
64
|
|
|
# if it is a csv file open it |
65
|
|
|
if file.endswith('.csv') and file != 'groundtruth.csv': |
66
|
|
|
filelist.append(file) |
67
|
|
|
return filelist |
68
|
|
|
|
69
|
1 |
|
def list_files(kwargs, results, config): |
70
|
|
|
""" Creates a list of files to be processed. """ |
71
|
1 |
|
files = [] |
72
|
1 |
|
directory = "" |
73
|
1 |
|
if 'file' in kwargs and kwargs['file'].endswith('.csv'): |
74
|
1 |
|
files = [kwargs['file']] |
75
|
|
|
elif 'directory' in kwargs: |
76
|
|
|
directory = kwargs['directory'] |
77
|
|
|
files = get_file_list(directory) |
78
|
|
|
logging.info('Found ' + str(len(files)) + ' files') |
79
|
|
|
else: |
80
|
|
|
raise ValueError('No input was provided') |
81
|
|
|
|
82
|
1 |
|
for file in files: |
83
|
1 |
|
if 'directory' in locals() and directory != "": |
84
|
|
|
logging.info("Processing " + file) |
85
|
|
|
file = directory + "/" + file |
86
|
1 |
|
res, config = process_file(file, config) |
87
|
1 |
|
for value in res: |
88
|
1 |
|
results[value].append(res[value]) |
89
|
|
|
|
90
|
1 |
|
return results |
91
|
|
|
|
92
|
1 |
|
def load(**kwargs): |
93
|
|
|
""" Loads the input files. """ |
94
|
|
|
|
95
|
|
|
# placeholder for aggregated results |
96
|
1 |
|
results = { |
97
|
|
|
'jobs' : [], |
98
|
|
|
'units' : [], |
99
|
|
|
'workers' : [], |
100
|
|
|
'judgments' : [], |
101
|
|
|
'annotations' : [] |
102
|
|
|
} |
103
|
|
|
|
104
|
1 |
|
if 'config' not in kwargs: |
105
|
|
|
config = DefaultConfig() |
106
|
|
|
else: |
107
|
1 |
|
logging.info('Config loaded') |
108
|
1 |
|
config = kwargs['config'] |
109
|
|
|
|
110
|
1 |
|
results = list_files(kwargs, results, config) |
111
|
|
|
|
112
|
1 |
|
for value in results: |
113
|
1 |
|
results[value] = pd.concat(results[value]) |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
# workers and annotations can appear across jobs, so we have to aggregate those extra |
117
|
1 |
|
results['workers'] = results['workers'].groupby(results['workers'].index).agg({ |
118
|
|
|
'unit' : 'sum', |
119
|
|
|
'judgment' : 'sum', |
120
|
|
|
'job' : 'count', |
121
|
|
|
'duration' : 'mean' |
122
|
|
|
}) |
123
|
|
|
|
124
|
|
|
# aggregate annotations |
125
|
1 |
|
results['annotations'] = results['annotations'].groupby(results['annotations'].index).sum() |
126
|
|
|
|
127
|
1 |
|
return results, config |
128
|
|
|
|
129
|
1 |
|
def remove_empty_rows(config, judgments): |
130
|
|
|
""" remove rows where the worker did not give an answer (AMT issue) """ |
131
|
1 |
|
empty_rows = set() |
132
|
1 |
|
for col in config.outputColumns: |
133
|
1 |
|
empty_rows = empty_rows.union(judgments[pd.isnull(judgments[col]) == True].index) |
134
|
1 |
|
for col in config.outputColumns: |
135
|
1 |
|
judgments = judgments[pd.isnull(judgments[col]) == False] |
136
|
1 |
|
judgments = judgments.reset_index(drop=True) |
137
|
1 |
|
count_empty_rows = len(empty_rows) |
138
|
1 |
|
if count_empty_rows > 0: |
139
|
|
|
if count_empty_rows == 1: |
140
|
|
|
logging.warning(str(count_empty_rows) + " row with incomplete information in " |
141
|
|
|
"output columns was removed.") |
142
|
|
|
else: |
143
|
|
|
logging.warning(str(count_empty_rows) + " rows with incomplete information in " |
144
|
|
|
"output columns were removed.") |
145
|
1 |
|
return judgments |
146
|
|
|
|
147
|
1 |
|
def remove_single_judgment_units(judgments): |
148
|
|
|
""" remove units with just 1 judgment """ |
149
|
1 |
|
units_1work = judgments.groupby('unit').filter(lambda x: len(x) == 1)["unit"] |
150
|
1 |
|
judgments = judgments[~judgments['unit'].isin(units_1work)] |
151
|
1 |
|
judgments = judgments.reset_index(drop=True) |
152
|
1 |
|
no_units_1work = len(units_1work) |
153
|
1 |
|
if no_units_1work > 0: |
154
|
|
|
if no_units_1work == 1: |
155
|
|
|
logging.warning(str(no_units_1work) + " Media Unit that was annotated by only" |
156
|
|
|
" 1 Worker was omitted, since agreement cannot be calculated.") |
157
|
|
|
else: |
158
|
|
|
logging.warning(str(no_units_1work) + " Media Units that were annotated by only" |
159
|
|
|
" 1 Worker were omitted, since agreement cannot be calculated.") |
160
|
1 |
|
return judgments |
161
|
|
|
|
162
|
1 |
|
def make_output_cols_safe_keys(config, judgments): |
163
|
|
|
""" make output values safe keys """ |
164
|
1 |
|
for col in config.output.values(): |
165
|
1 |
|
if isinstance(judgments[col].iloc[0], dict): |
166
|
|
|
logging.info("Values stored as dictionary") |
167
|
|
|
if config.open_ended_task: |
168
|
|
|
judgments[col] = judgments[col].apply(lambda x: OrderedCounter(x)) |
169
|
|
|
else: |
170
|
|
|
judgments[col] = judgments[col].apply(lambda x: create_ordered_counter( \ |
171
|
|
|
OrderedCounter(x), config.annotation_vector)) |
172
|
|
|
else: |
173
|
1 |
|
logging.info("Values not stored as dictionary") |
174
|
1 |
|
if config.open_ended_task: |
175
|
1 |
|
judgments[col] = judgments[col].apply(lambda x: OrderedCounter( \ |
176
|
|
|
x.split(config.annotation_separator))) |
177
|
|
|
else: |
178
|
1 |
|
judgments[col] = judgments[col].apply(lambda x: create_ordered_counter( \ |
179
|
|
|
OrderedCounter(x.split(config.annotation_separator)), \ |
180
|
|
|
config.annotation_vector)) |
181
|
1 |
|
return judgments |
182
|
|
|
|
183
|
|
|
|
184
|
1 |
|
def add_missing_values(config, units): |
185
|
|
|
""" Adds missing vector values if is a closed task """ |
186
|
1 |
|
for col in config.output.values(): |
187
|
1 |
|
try: |
188
|
|
|
# openended = config.open_ended_task |
189
|
1 |
|
for idx in list(units.index): |
190
|
1 |
|
for relation in config.annotation_vector: |
191
|
1 |
|
if relation not in units[col][idx]: |
192
|
1 |
|
units[col][idx].update({relation : 0}) |
193
|
1 |
|
return units |
194
|
|
|
except AttributeError: |
195
|
|
|
continue |
196
|
|
|
|
197
|
1 |
|
def process_file(filename, config): |
198
|
|
|
""" Processes input files with the given configuration """ |
199
|
|
|
|
200
|
1 |
|
judgments = pd.read_csv(filename)#, encoding=result['encoding']) |
201
|
|
|
|
202
|
1 |
|
platform = get_platform(judgments) |
203
|
|
|
|
204
|
1 |
|
if platform is False: |
205
|
1 |
|
logging.info("Custom crowdsourcing platform!") |
206
|
1 |
|
no_of_columns = len(config.customPlatformColumns) |
207
|
1 |
|
if no_of_columns != 5: |
208
|
|
|
logging.warning("The following column names are required: judgment id, " |
209
|
|
|
"unit id, worker id, start time, submit time") |
210
|
|
|
raise ValueError('No custom platform configuration was provided') |
211
|
|
|
else: |
212
|
|
|
|
213
|
1 |
|
platform = { |
214
|
|
|
#'id' : 'custom', |
215
|
|
|
config.customPlatformColumns[0] : 'judgment', |
216
|
|
|
config.customPlatformColumns[1] : 'unit', |
217
|
|
|
config.customPlatformColumns[2] : 'worker', |
218
|
|
|
config.customPlatformColumns[3] : 'started', |
219
|
|
|
config.customPlatformColumns[4] : 'submitted' |
220
|
|
|
} |
221
|
|
|
|
222
|
|
|
|
223
|
|
|
# we must establish which fields were part of the input data and which are output judgments |
224
|
|
|
# if there is a config, check if there is a definition of which fields to use |
225
|
|
|
#config = [] |
226
|
|
|
# else use the default and select them automatically |
227
|
1 |
|
config = get_column_types(judgments, config) |
228
|
|
|
|
229
|
1 |
|
judgments = remove_empty_rows(config, judgments) |
230
|
|
|
# allow customization of the judgments |
231
|
1 |
|
judgments = config.processJudgments(judgments) |
232
|
|
|
|
233
|
|
|
# update the config after the preprocessing of judgments |
234
|
1 |
|
config = get_column_types(judgments, config) |
235
|
|
|
|
236
|
1 |
|
all_columns = dict(list(config.input.items()) + list(config.output.items()) \ |
237
|
|
|
+ list(platform.items())) |
238
|
|
|
# allColumns = dict(config.input.items() | config.output.items() | platform.items()) |
239
|
1 |
|
judgments = judgments.rename(columns=all_columns) |
240
|
|
|
|
241
|
|
|
# remove columns we don't care about |
242
|
1 |
|
judgments = judgments[list(all_columns.values())] |
243
|
|
|
|
244
|
1 |
|
judgments['job'] = filename.split('.csv')[0] |
245
|
|
|
|
246
|
|
|
# make output values safe keys |
247
|
1 |
|
judgments = make_output_cols_safe_keys(config, judgments) |
248
|
|
|
|
249
|
1 |
|
judgments['started'] = judgments['started'].apply(lambda x: pd.to_datetime(str(x))) |
250
|
1 |
|
judgments['submitted'] = judgments['submitted'].apply(lambda x: pd.to_datetime(str(x))) |
251
|
1 |
|
judgments['duration'] = judgments.apply(lambda row: (row['submitted'] - row['started']).seconds, |
252
|
|
|
axis=1) |
253
|
|
|
|
254
|
|
|
# remove units with just 1 judgment |
255
|
1 |
|
judgments = remove_single_judgment_units(judgments) |
256
|
|
|
|
257
|
|
|
# |
258
|
|
|
# aggregate units |
259
|
|
|
# |
260
|
1 |
|
units = Unit.aggregate(judgments, config) |
261
|
|
|
|
262
|
1 |
|
for col in config.output.values(): |
263
|
1 |
|
judgments[col+'.count'] = judgments[col].apply(lambda x: sum(x.values())) |
264
|
1 |
|
judgments[col+'.unique'] = judgments[col].apply(lambda x: len(x)) |
265
|
|
|
|
266
|
|
|
|
267
|
|
|
# |
268
|
|
|
# aggregate workers |
269
|
|
|
# |
270
|
1 |
|
workers = Worker.aggregate(judgments, config) |
271
|
|
|
|
272
|
|
|
|
273
|
|
|
# |
274
|
|
|
# aggregate annotations |
275
|
|
|
# i.e. output columns |
276
|
|
|
# |
277
|
1 |
|
annotations = pd.DataFrame() |
278
|
1 |
|
for col in config.output.values(): |
279
|
1 |
|
res = pd.DataFrame(judgments[col].apply(lambda x: \ |
280
|
|
|
pd.Series(list(x.keys())).value_counts()).sum(), columns=[col]) |
281
|
1 |
|
annotations = pd.concat([annotations, res], axis=0) |
282
|
|
|
|
283
|
|
|
# |
284
|
|
|
# aggregate job |
285
|
|
|
# |
286
|
1 |
|
job = Job.aggregate(units, judgments, config) |
287
|
|
|
|
288
|
|
|
# Clean up judgments |
289
|
|
|
# remove input columns from judgments |
290
|
1 |
|
output_cols = [col for col in judgments.columns.values \ |
291
|
|
|
if col.startswith('output') or col.startswith('metric')] |
292
|
1 |
|
judgments = judgments[output_cols + list(platform.values()) + ['duration', 'job']] |
293
|
|
|
|
294
|
|
|
# set judgment id as index |
295
|
1 |
|
judgments.set_index('judgment', inplace=True) |
296
|
|
|
|
297
|
|
|
# add missing vector values if closed task |
298
|
1 |
|
units = add_missing_values(config, units) |
299
|
|
|
|
300
|
1 |
|
return { |
301
|
|
|
'jobs' : job, |
302
|
|
|
'units' : units, |
303
|
|
|
'workers' : workers, |
304
|
|
|
'judgments' : judgments, |
305
|
|
|
'annotations' : annotations, |
306
|
|
|
}, config |
307
|
|
|
|
308
|
|
|
|
309
|
1 |
|
def get_platform(dframe): |
310
|
|
|
""" Get the crowdsourcing platform this file originates to """ |
311
|
|
|
|
312
|
1 |
|
if dframe.columns.values[0] == '_unit_id': |
313
|
|
|
# CrowdFlower |
314
|
1 |
|
return { |
315
|
|
|
#'_platform' : 'cf', |
316
|
|
|
'_id' : 'judgment', |
317
|
|
|
'_unit_id' : 'unit', |
318
|
|
|
'_worker_id' : 'worker', |
319
|
|
|
'_started_at' : 'started', |
320
|
|
|
'_created_at' : 'submitted' |
321
|
|
|
} |
322
|
1 |
|
elif dframe.columns.values[0] == 'HITId': |
323
|
|
|
# Mturk |
324
|
|
|
return { |
325
|
|
|
#'id' : 'amt', |
326
|
|
|
'AssignmentId' : 'judgment', |
327
|
|
|
'HITId' : 'unit', |
328
|
|
|
'WorkerId' : 'worker', |
329
|
|
|
'AcceptTime' : 'started', |
330
|
|
|
'SubmitTime' : 'submitted' |
331
|
|
|
} |
332
|
1 |
|
return False |
333
|
|
|
|
334
|
1 |
|
def configure_amt_columns(dframe, config): |
335
|
|
|
""" Configures AMT input and output columns. """ |
336
|
|
|
config.input = {} |
337
|
|
|
config.output = {} |
338
|
|
|
|
339
|
|
|
if config.inputColumns: |
340
|
|
|
config.input = {c: 'input.'+c.replace('Input.', '') \ |
341
|
|
|
for c in dframe.columns.values if c in config.inputColumns} |
342
|
|
|
else: |
343
|
|
|
config.input = {c: 'input.'+c.replace('Input.', '') \ |
344
|
|
|
for c in dframe.columns.values if c.startswith('Input.')} |
345
|
|
|
|
346
|
|
|
# if config is specified, use those columns |
347
|
|
|
if config.outputColumns: |
348
|
|
|
config.output = {c: 'output.'+c.replace('Answer.', '') \ |
349
|
|
|
for c in dframe.columns.values if c in config.outputColumns} |
350
|
|
|
else: |
351
|
|
|
config.output = {c: 'output.'+c.replace('Answer.', '') \ |
352
|
|
|
for c in dframe.columns.values if c.startswith('Answer.')} |
353
|
|
|
return config.input, config.output |
354
|
|
|
|
355
|
1 |
|
def configure_platform_columns(dframe, config): |
356
|
|
|
""" Configures FigureEight and custom platforms input and output columns. """ |
357
|
1 |
|
config.input = {} |
358
|
1 |
|
config.output = {} |
359
|
|
|
|
360
|
1 |
|
if config.inputColumns: |
361
|
1 |
|
config.input = {c: 'input.'+c for c in dframe.columns.values \ |
362
|
|
|
if c in config.inputColumns} |
363
|
1 |
|
if config.outputColumns: |
364
|
1 |
|
config.output = {c: 'output.'+c for c in dframe.columns.values \ |
365
|
|
|
if c in config.outputColumns} |
366
|
1 |
|
return config.input, config.output |
367
|
|
|
|
368
|
1 |
|
def configure_with_missing_columns(dframe, config): |
369
|
|
|
""" Identifies the type of the column based on naming """ |
370
|
|
|
units = dframe.groupby('_unit_id') |
371
|
|
|
columns = [c for c in dframe.columns.values if c != 'clustering' and not c.startswith('_') \ |
372
|
|
|
and not c.startswith('e_') and not c.endswith('_gold') \ |
373
|
|
|
and not c.endswith('_reason') and not c.endswith('browser')] |
374
|
|
|
for colname in columns: |
375
|
|
|
try: |
376
|
|
|
for _, unit in units: |
377
|
|
|
unique = unit[colname].nunique() |
378
|
|
|
if unique != 1 and unique != 0: |
379
|
|
|
raise Found |
380
|
|
|
if not config.inputColumns: |
381
|
|
|
config.input[colname] = 'input.'+colname |
382
|
|
|
|
383
|
|
|
except Found: |
384
|
|
|
if not config.outputColumns: |
385
|
|
|
config.output[colname] = 'output.'+colname |
386
|
|
|
|
387
|
|
|
return config |
388
|
|
|
|
389
|
1 |
|
def get_column_types(dframe, config): |
390
|
|
|
""" return input and output columns """ |
391
|
|
|
# returns a list of columns that contain are input content |
392
|
1 |
|
config.input = {} |
393
|
1 |
|
config.output = {} |
394
|
|
|
|
395
|
|
|
# get a dict of the columns with input content and the columns with output judgments |
396
|
|
|
# each entry matches [original column name]:[safestring column name] |
397
|
1 |
|
if dframe.columns.values[0] == 'HITId': |
398
|
|
|
# Mturk |
399
|
|
|
# if config is specified, use those columns |
400
|
|
|
config.input, config.output = configure_amt_columns(dframe, config) |
401
|
|
|
|
402
|
|
|
return config |
403
|
|
|
|
404
|
1 |
|
elif dframe.columns.values[0] == '_unit_id': |
405
|
|
|
|
406
|
|
|
# if a config is specified, use those columns |
407
|
1 |
|
config.input, config.output = configure_platform_columns(dframe, config) |
408
|
|
|
# if there is a config for both input and output columns, we can return those |
409
|
1 |
|
if config.inputColumns and config.outputColumns: |
410
|
1 |
|
return config |
411
|
|
|
|
412
|
|
|
# try to identify the input and output columns |
413
|
|
|
# this is the case if all the values in the column are identical |
414
|
|
|
# this is not failsafe but should give decent results without settings |
415
|
|
|
# it is best to make a settings.py file for a collection |
416
|
|
|
|
417
|
|
|
return configure_with_missing_columns(dframe, config) |
418
|
|
|
|
419
|
|
|
else: |
420
|
|
|
# unknown platform type |
421
|
|
|
|
422
|
|
|
# if a config is specified, use those columns |
423
|
1 |
|
config.input, config.output = configure_platform_columns(dframe, config) |
424
|
|
|
# if there is a config for both input and output columns, we can return those |
425
|
1 |
|
if config.inputColumns and config.outputColumns: |
426
|
|
|
return config |
427
|
|
|
|