1
|
1 |
|
import os |
2
|
|
|
|
3
|
1 |
|
import logging |
4
|
1 |
|
import pdb |
5
|
|
|
|
6
|
1 |
|
import sys |
7
|
1 |
|
import chardet |
8
|
1 |
|
import re, string |
9
|
1 |
|
import pandas as pd |
10
|
1 |
|
import numpy as np |
11
|
1 |
|
from datetime import datetime |
12
|
1 |
|
from collections import Counter, OrderedDict |
13
|
1 |
|
import re |
14
|
|
|
|
15
|
1 |
|
from crowdtruth.models.metrics import * |
16
|
1 |
|
from crowdtruth.models.worker import * |
17
|
1 |
|
from crowdtruth.models.unit import * |
18
|
1 |
|
from crowdtruth.models.job import * |
19
|
1 |
|
from crowdtruth.configuration import DefaultConfig |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
|
23
|
|
|
|
24
|
|
|
# create an ordered counter so that we can maintain the position of tags in the order they were annotated |
25
|
1 |
|
class OrderedCounter(Counter, OrderedDict): |
26
|
1 |
|
pass |
27
|
|
|
|
28
|
1 |
|
def createOrderedCounter(orderedCounter, annotation_vector): |
29
|
1 |
|
for relation in annotation_vector: |
30
|
1 |
|
if relation not in orderedCounter: |
31
|
1 |
|
orderedCounter.update({relation: 0}) |
32
|
1 |
|
return orderedCounter |
33
|
|
|
|
34
|
|
|
|
35
|
1 |
|
class Found(Exception): pass |
36
|
|
|
|
37
|
1 |
|
def validateTimestampField(date_string, date_format): |
38
|
|
|
try: |
39
|
|
|
date_obj = datetime.datetime.strptime(date_string, date_format) |
40
|
|
|
print(date_obj) |
41
|
|
|
except ValueError: |
42
|
|
|
raise ValueError('Incorrect date format') |
43
|
|
|
|
44
|
1 |
|
def getFileList(directory): |
45
|
|
|
filelist = [] |
46
|
|
|
|
47
|
|
|
# go through all files in this folder |
48
|
|
|
for f in os.listdir(directory): |
49
|
|
|
# if it is a folder scan it |
50
|
|
|
if os.path.isdir(directory+'/'+f): |
51
|
|
|
sublist = getFileList(directory+'/'+f) |
52
|
|
|
if len(sublist): |
53
|
|
|
filelist.append(sublist) |
54
|
|
|
|
55
|
|
|
# if it is a csv file open it |
56
|
|
|
elif f.endswith('.csv') and f != 'groundtruth.csv': |
57
|
|
|
filelist.append(f) |
58
|
|
|
return filelist |
59
|
|
|
|
60
|
1 |
|
def load(**kwargs): |
61
|
|
|
|
62
|
|
|
# placeholder for aggregated results |
63
|
1 |
|
results = { |
64
|
|
|
'jobs' : [], |
65
|
|
|
'units' : [], |
66
|
|
|
'workers' : [], |
67
|
|
|
'judgments' : [], |
68
|
|
|
'annotations' : [] |
69
|
|
|
} |
70
|
|
|
|
71
|
|
|
|
72
|
1 |
|
if 'config' not in kwargs: |
73
|
|
|
config = DefaultConfig() |
74
|
|
|
else: |
75
|
1 |
|
logging.info('Config loaded') |
76
|
1 |
|
config = kwargs['config'] |
77
|
|
|
|
78
|
|
|
# check if files is a single file or folder |
79
|
1 |
|
if('file' in kwargs and kwargs['file'].endswith('.csv')): |
80
|
1 |
|
files = [kwargs['file']] |
81
|
|
|
elif('directory' in kwargs): |
82
|
|
|
directory = kwargs['directory'] |
83
|
|
|
files = getFileList(directory) |
84
|
|
|
logging.info('Found ' + str(len(files)) + ' files') |
85
|
|
|
else: |
86
|
|
|
raise ValueError('No input was provided') |
87
|
|
|
|
88
|
|
|
|
89
|
1 |
|
for f in files: |
90
|
1 |
|
if 'directory' in locals(): |
91
|
|
|
logging.info("Processing " + f) |
92
|
|
|
f = directory + "/" + f |
93
|
1 |
|
res, config = processFile(f, config) |
94
|
1 |
|
for x in res: |
95
|
1 |
|
results[x].append(res[x]) |
96
|
|
|
|
97
|
|
|
|
98
|
1 |
|
for x in results: |
99
|
1 |
|
results[x] = pd.concat(results[x]) |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
# workers and annotations can appear across jobs, so we have to aggregate those extra |
103
|
1 |
|
results['workers'] = results['workers'].groupby(results['workers'].index).agg({ |
104
|
|
|
'unit' : 'sum', |
105
|
|
|
'judgment' : 'sum', |
106
|
|
|
'job' : 'count', |
107
|
|
|
'duration' : 'mean' |
108
|
|
|
}) |
109
|
|
|
|
110
|
|
|
# aggregate annotations |
111
|
1 |
|
results['annotations'] = results['annotations'].groupby(results['annotations'].index).sum() |
112
|
|
|
|
113
|
1 |
|
return results, config |
114
|
|
|
|
115
|
|
|
|
116
|
1 |
|
def processFile(filename, config): |
117
|
|
|
|
118
|
|
|
|
119
|
1 |
|
job = filename.split('.csv')[0] |
120
|
|
|
|
121
|
1 |
|
judgments = pd.read_csv(filename)#, encoding=result['encoding']) |
122
|
|
|
|
123
|
1 |
|
collection = '' |
124
|
|
|
|
125
|
1 |
|
platform = getPlatform(judgments) |
126
|
|
|
|
127
|
1 |
|
if platform == False: |
128
|
|
|
logging.info("Custom crowdsourcing platform!") |
129
|
|
|
|
130
|
|
|
if (len(config.customPlatformColumns) != 5): |
131
|
|
|
logging.warning("The following column names are required: judgment id, unit id, worker id, start time, submit time") |
132
|
|
|
raise ValueError('No custom platform configuration was provided') |
133
|
|
|
else: |
134
|
|
|
|
135
|
|
|
platform = { |
136
|
|
|
#'id' : 'custom', |
137
|
|
|
config.customPlatformColumns[0] : 'judgment', |
138
|
|
|
config.customPlatformColumns[1] : 'unit', |
139
|
|
|
config.customPlatformColumns[2] : 'worker', |
140
|
|
|
config.customPlatformColumns[3] : 'started', |
141
|
|
|
config.customPlatformColumns[4] : 'submitted' |
142
|
|
|
} |
143
|
|
|
|
144
|
|
|
|
145
|
|
|
# we must establish which fields were part of the input data and which are output judgments |
146
|
|
|
# if there is a config, check if there is a definition of which fields to use |
147
|
|
|
#config = [] |
148
|
|
|
# else use the default and select them automatically |
149
|
1 |
|
config = getColumnTypes(judgments, config) |
150
|
|
|
|
151
|
|
|
# remove rows where the worker did not give an answer (AMT issue) |
152
|
1 |
|
empty_rows = set() |
153
|
1 |
|
for col in config.outputColumns: |
154
|
1 |
|
empty_rows = empty_rows.union(judgments[pd.isnull(judgments[col]) == True].index) |
155
|
1 |
|
for col in config.outputColumns: |
156
|
1 |
|
judgments = judgments[pd.isnull(judgments[col]) == False] |
157
|
1 |
|
judgments = judgments.reset_index(drop=True) |
158
|
1 |
|
if len(empty_rows) > 0: |
159
|
|
|
if len(empty_rows) == 1: |
160
|
|
|
logging.warning(str(len(empty_rows)) + " row with incomplete information in output columns was removed.") |
161
|
|
|
else: |
162
|
|
|
logging.warning(str(len(empty_rows)) + " rows with incomplete information in output columns were removed.") |
163
|
|
|
|
164
|
|
|
# allow customization of the judgments |
165
|
1 |
|
judgments = config.processJudgments(judgments) |
166
|
|
|
|
167
|
|
|
# update the config after the preprocessing of judgments |
168
|
1 |
|
config = getColumnTypes(judgments, config) |
169
|
|
|
|
170
|
1 |
|
allColumns = dict(list(config.input.items()) + list(config.output.items()) + list(platform.items())) |
171
|
|
|
# allColumns = dict(config.input.items() | config.output.items() | platform.items()) |
172
|
1 |
|
judgments = judgments.rename(columns=allColumns) |
173
|
|
|
|
174
|
|
|
# remove columns we don't care about |
175
|
1 |
|
judgments = judgments[list(allColumns.values())] |
176
|
|
|
|
177
|
1 |
|
judgments['job'] = job |
178
|
|
|
|
179
|
|
|
# make output values safe keys |
180
|
1 |
|
for col in config.output.values(): |
181
|
1 |
|
if type(judgments[col].iloc[0]) is dict: |
182
|
|
|
logging.info("Values stored as dictionary") |
183
|
|
|
if config.open_ended_task: |
184
|
|
|
judgments[col] = judgments[col].apply(lambda x: OrderedCounter(x)) |
185
|
|
|
else: |
186
|
|
|
judgements[col] = judgements[col].apply(lambda x: createOrderedCounter(OrderedCounter(x), config.annotation_vector)) |
|
|
|
|
187
|
|
|
else: |
188
|
1 |
|
logging.info("Values not stored as dictionary") |
189
|
1 |
|
if config.open_ended_task: |
190
|
1 |
|
judgments[col] = judgments[col].apply(lambda x: OrderedCounter(x.split(config.annotation_separator))) |
191
|
|
|
else: |
192
|
1 |
|
judgments[col] = judgments[col].apply(lambda x: createOrderedCounter(OrderedCounter(x.split(config.annotation_separator)), config.annotation_vector)) |
193
|
|
|
|
194
|
1 |
|
judgments['started'] = judgments['started'].apply(lambda x: pd.to_datetime(str(x))) |
195
|
1 |
|
judgments['submitted'] = judgments['submitted'].apply(lambda x: pd.to_datetime(str(x))) |
196
|
1 |
|
judgments['duration'] = judgments.apply(lambda row: (row['submitted'] - row['started']).seconds, axis=1) |
197
|
|
|
|
198
|
|
|
# remove units with just 1 judgment |
199
|
1 |
|
units_1work = judgments.groupby('unit').filter(lambda x: len(x) == 1)["unit"] |
200
|
1 |
|
judgments = judgments[~judgments['unit'].isin(units_1work)] |
201
|
1 |
|
judgments = judgments.reset_index(drop=True) |
202
|
1 |
|
if len(units_1work) > 0: |
203
|
|
|
if len(units_1work) == 1: |
204
|
|
|
logging.warning(str(len(units_1work)) + " Media Unit that was annotated by only 1 Worker was omitted, since agreement cannot be calculated.") |
205
|
|
|
else: |
206
|
|
|
logging.warning(str(len(units_1work)) + " Media Units that were annotated by only 1 Worker were omitted, since agreement cannot be calculated.") |
207
|
|
|
|
208
|
|
|
# |
209
|
|
|
# aggregate units |
210
|
|
|
# |
211
|
1 |
|
units = Unit.aggregate(judgments, config) |
|
|
|
|
212
|
|
|
|
213
|
1 |
|
for col in config.output.values(): |
214
|
1 |
|
judgments[col+'.count'] = judgments[col].apply(lambda x: sum(x.values())) |
215
|
1 |
|
judgments[col+'.unique'] = judgments[col].apply(lambda x: len(x)) |
216
|
|
|
|
217
|
|
|
|
218
|
|
|
# |
219
|
|
|
# aggregate workers |
220
|
|
|
# |
221
|
1 |
|
workers = Worker.aggregate(judgments, config) |
|
|
|
|
222
|
|
|
|
223
|
|
|
|
224
|
|
|
# |
225
|
|
|
# aggregate annotations |
226
|
|
|
# i.e. output columns |
227
|
|
|
# |
228
|
1 |
|
annotations = pd.DataFrame() |
229
|
1 |
|
for col in config.output.values(): |
230
|
1 |
|
res = pd.DataFrame(judgments[col].apply(lambda x: pd.Series(list(x.keys())).value_counts()).sum(),columns=[col]) |
231
|
1 |
|
annotations = pd.concat([annotations, res], axis=0) |
232
|
|
|
|
233
|
|
|
# |
234
|
|
|
# aggregate job |
235
|
|
|
# |
236
|
1 |
|
job = Job.aggregate(units, judgments, workers, config) |
|
|
|
|
237
|
|
|
|
238
|
|
|
# Clean up judgments |
239
|
|
|
# remove input columns from judgments |
240
|
1 |
|
outputCol = [col for col in judgments.columns.values if col.startswith('output') or col.startswith('metric')] |
241
|
1 |
|
judgments = judgments[outputCol + list(platform.values()) + ['duration','job']] |
242
|
|
|
|
243
|
|
|
# set judgment id as index |
244
|
1 |
|
judgments.set_index('judgment', inplace=True) |
245
|
|
|
|
246
|
|
|
# add missing vector values if closed task |
247
|
1 |
|
for col in config.output.values(): |
248
|
1 |
|
try: |
249
|
1 |
|
openended = config.open_ended_task |
250
|
1 |
|
for idx in list(units.index): |
251
|
1 |
|
for relation in config.annotation_vector: |
252
|
1 |
|
if relation not in units[col][idx]: |
253
|
1 |
|
units[col][idx].update({relation : 0}) |
254
|
|
|
except AttributeError: |
255
|
|
|
continue |
256
|
|
|
|
257
|
1 |
|
return { |
258
|
|
|
'jobs' : job, |
259
|
|
|
'units' : units, |
260
|
|
|
'workers' : workers, |
261
|
|
|
'judgments' : judgments, |
262
|
|
|
'annotations' : annotations, |
263
|
|
|
}, config |
264
|
|
|
|
265
|
|
|
|
266
|
1 |
|
def getPlatform(df): |
267
|
|
|
# Get the crowdsourcing platform this file originates to |
268
|
|
|
|
269
|
1 |
|
if df.columns.values[0] == '_unit_id': |
270
|
|
|
# CrowdFlower |
271
|
1 |
|
return { |
272
|
|
|
#'_platform' : 'cf', |
273
|
|
|
'_id' : 'judgment', |
274
|
|
|
'_unit_id' : 'unit', |
275
|
|
|
'_worker_id' : 'worker', |
276
|
|
|
'_started_at' : 'started', |
277
|
|
|
'_created_at' : 'submitted' |
278
|
|
|
} |
279
|
|
|
elif df.columns.values[0] == 'HITId': |
280
|
|
|
# Mturk |
281
|
|
|
return { |
282
|
|
|
#'id' : 'amt', |
283
|
|
|
'AssignmentId' : 'judgment', |
284
|
|
|
'HITId' : 'unit', |
285
|
|
|
'WorkerId' : 'worker', |
286
|
|
|
'AcceptTime' : 'started', |
287
|
|
|
'SubmitTime' : 'submitted' |
288
|
|
|
} |
289
|
|
|
else: |
290
|
|
|
|
291
|
|
|
return False |
292
|
|
|
|
293
|
|
|
|
294
|
|
|
|
295
|
1 |
|
def getColumnTypes(df, config): |
296
|
|
|
|
297
|
|
|
# returns a list of columns that contain are input content |
298
|
1 |
|
config.input = {} |
299
|
1 |
|
config.output = {} |
300
|
|
|
|
301
|
|
|
# get a dict of the columns with input content and the columns with output judgments |
302
|
|
|
# each entry matches [original column name]:[safestring column name] |
303
|
1 |
|
if df.columns.values[0] == 'HITId': |
304
|
|
|
# Mturk |
305
|
|
|
# if config is specified, use those columns |
306
|
|
|
if config.inputColumns: |
307
|
|
|
config.input = {c:'input.'+c.replace('Input.','') for c in df.columns.values if c in config.inputColumns} |
308
|
|
|
else: |
309
|
|
|
config.input = {c:'input.'+c.replace('Input.','') for c in df.columns.values if c.startswith('Input.')} |
310
|
|
|
|
311
|
|
|
# if config is specified, use those columns |
312
|
|
|
if config.outputColumns: |
313
|
|
|
config.output = {c:'output.'+c.replace('Answer.','') for c in df.columns.values if c in config.outputColumns} |
314
|
|
|
else: |
315
|
|
|
config.output = {c:'output.'+c.replace('Answer.','') for c in df.columns.values if c.startswith('Answer.')} |
316
|
|
|
return config |
317
|
|
|
|
318
|
1 |
|
elif df.columns.values[0] == '_unit_id': |
319
|
|
|
|
320
|
|
|
# if a config is specified, use those columns |
321
|
1 |
|
if config.inputColumns: |
322
|
1 |
|
config.input = {c:'input.'+c for c in df.columns.values if c in config.inputColumns} |
323
|
1 |
|
if config.outputColumns: |
324
|
1 |
|
config.output = {c:'output.'+c for c in df.columns.values if c in config.outputColumns} |
325
|
|
|
# if there is a config for both input and output columns, we can return those |
326
|
1 |
|
if config.inputColumns and config.outputColumns: |
327
|
1 |
|
return config |
328
|
|
|
|
329
|
|
|
# try to identify the input and output columns |
330
|
|
|
# this is the case if all the values in the column are identical |
331
|
|
|
# this is not failsafe but should give decent results without settings |
332
|
|
|
# it is best to make a settings.py file for a collection |
333
|
|
|
|
334
|
|
|
units = df.groupby('_unit_id') |
335
|
|
|
columns = [c for c in df.columns.values if c != 'clustering' and not c.startswith('_') and not c.startswith('e_') and not c.endswith('_gold') and not c.endswith('_reason') and not c.endswith('browser')] |
336
|
|
|
for c in columns: |
337
|
|
|
try: |
338
|
|
|
for i, unit in units: |
339
|
|
|
unique = unit[c].nunique() |
340
|
|
|
if unique != 1 and unique != 0: |
341
|
|
|
raise Found |
342
|
|
|
if not config.inputColumns: |
343
|
|
|
config.input[c] = 'input.'+c |
344
|
|
|
|
345
|
|
|
except Found: |
346
|
|
|
if not config.outputColumns: |
347
|
|
|
config.output[c] = 'output.'+c |
348
|
|
|
|
349
|
|
|
return config |
350
|
|
|
else: |
351
|
|
|
# unknown platform type |
352
|
|
|
|
353
|
|
|
# if a config is specified, use those columns |
354
|
|
|
if config.inputColumns: |
355
|
|
|
config.input = {c:'input.'+c for c in df.columns.values if c in config.inputColumns} |
356
|
|
|
if config.outputColumns: |
357
|
|
|
config.output = {c:'output.'+c for c in df.columns.values if c in config.outputColumns} |
358
|
|
|
# if there is a config for both input and output columns, we can return those |
359
|
|
|
if config.inputColumns and config.outputColumns: |
360
|
|
|
return config |
361
|
|
|
|