1
|
|
|
""" |
2
|
|
|
Initialization of CrowdTruth metrics |
3
|
|
|
""" |
4
|
1 |
|
import logging |
5
|
1 |
|
import math |
6
|
|
|
|
7
|
1 |
|
from collections import Counter |
8
|
|
|
|
9
|
1 |
|
import numpy as np |
10
|
1 |
|
import pandas as pd |
11
|
|
|
|
12
|
1 |
|
SMALL_NUMBER_CONST = 0.00000001 |
13
|
|
|
|
14
|
1 |
|
class Metrics(): |
15
|
|
|
""" |
16
|
|
|
Computes and applies the CrowdTruth metrics for evaluating units, workers and annotations. |
17
|
|
|
""" |
18
|
|
|
|
19
|
|
|
# Unit Quality Score |
20
|
1 |
|
@staticmethod |
21
|
|
|
def unit_quality_score(unit_id, unit_work_ann_dict, wqs, aqs): |
22
|
|
|
""" |
23
|
|
|
Computes the unit quality score. |
24
|
|
|
|
25
|
|
|
The unit quality score (UQS) is computed as the average cosine similarity between |
26
|
|
|
all worker vectors for a given unit, weighted by the worker quality (WQS) and the |
27
|
|
|
annotation quality (AQS). The goal is to capture the degree of agreement in annotating |
28
|
|
|
the media unit. |
29
|
|
|
|
30
|
|
|
Through the weighted average, workers and annotations with lower quality will have |
31
|
|
|
less of an impact on the final score. |
32
|
|
|
|
33
|
|
|
To weigh the metrics with the annotation quality, we compute weighted_cosine, the weighted |
34
|
|
|
version of the cosine similarity. |
35
|
|
|
|
36
|
|
|
Args: |
37
|
|
|
unit_id: Unit id. |
38
|
|
|
unit_work_ann_dict: A dictionary that contains all the workers judgments for the unit. |
39
|
|
|
aqs: Dict of annotation_id (string) that contains the annotation quality score (float) |
40
|
|
|
wqs: Dict of worker_id (string) that contains the worker quality score (float) |
41
|
|
|
|
42
|
|
|
Returns: |
43
|
|
|
The quality score (UQS) of the given unit. |
44
|
|
|
""" |
45
|
|
|
|
46
|
1 |
|
uqs_numerator = 0.0 |
47
|
1 |
|
uqs_denominator = 0.0 |
48
|
1 |
|
worker_ids = list(unit_work_ann_dict[unit_id].keys()) |
49
|
|
|
|
50
|
1 |
|
for worker_i in range(len(worker_ids) - 1): |
51
|
1 |
|
for worker_j in range(worker_i + 1, len(worker_ids)): |
52
|
1 |
|
numerator = 0.0 |
53
|
1 |
|
denominator_i = 0.0 |
54
|
1 |
|
denominator_j = 0.0 |
55
|
|
|
|
56
|
1 |
|
worker_i_vector = unit_work_ann_dict[unit_id][worker_ids[worker_i]] |
57
|
1 |
|
worker_j_vector = unit_work_ann_dict[unit_id][worker_ids[worker_j]] |
58
|
|
|
|
59
|
1 |
|
for ann in worker_i_vector: |
60
|
1 |
|
worker_i_vector_ann = worker_i_vector[ann] |
61
|
1 |
|
worker_j_vector_ann = worker_j_vector[ann] |
62
|
1 |
|
numerator += aqs[ann] * (worker_i_vector_ann * worker_j_vector_ann) |
63
|
1 |
|
denominator_i += aqs[ann] * (worker_i_vector_ann * worker_i_vector_ann) |
64
|
1 |
|
denominator_j += aqs[ann] * (worker_j_vector_ann * worker_j_vector_ann) |
65
|
|
|
|
66
|
1 |
|
denominator = math.sqrt(denominator_i * denominator_j) |
67
|
1 |
|
if denominator < SMALL_NUMBER_CONST: |
68
|
|
|
denominator = SMALL_NUMBER_CONST |
69
|
1 |
|
weighted_cosine = numerator / denominator |
70
|
|
|
|
71
|
1 |
|
uqs_numerator += weighted_cosine * wqs[worker_ids[worker_i]] * \ |
72
|
|
|
wqs[worker_ids[worker_j]] |
73
|
1 |
|
uqs_denominator += wqs[worker_ids[worker_i]] * wqs[worker_ids[worker_j]] |
74
|
|
|
|
75
|
1 |
|
if uqs_denominator < SMALL_NUMBER_CONST: |
76
|
1 |
|
uqs_denominator = SMALL_NUMBER_CONST |
77
|
1 |
|
return uqs_numerator / uqs_denominator |
78
|
|
|
|
79
|
|
|
|
80
|
|
|
# Worker - Unit Agreement |
81
|
1 |
|
@staticmethod |
82
|
|
|
def worker_unit_agreement(worker_id, unit_ann_dict, work_unit_ann_dict, uqs, aqs, wqs): |
83
|
|
|
""" |
84
|
|
|
Computes the worker agreement on a unit. |
85
|
|
|
|
86
|
|
|
The worker unit agreement (WUA) is the average cosine distance between the annotations |
87
|
|
|
of a worker i and all the other annotations for the units they have worked on, |
88
|
|
|
weighted by the unit and annotation quality. It calculates how much a worker disagrees |
89
|
|
|
with the crowd on a unit basis. |
90
|
|
|
|
91
|
|
|
Through the weighted average, units and anntation with lower quality will have less |
92
|
|
|
of an impact on the final score. |
93
|
|
|
|
94
|
|
|
Args: |
95
|
|
|
worker_id: Worker id. |
96
|
|
|
unit_ann_dict: Dictionary of units and their aggregated annotations. |
97
|
|
|
work_unit_ann_dict: Dictionary of units (and its annotation) annotated by the worker. |
98
|
|
|
uqs: Dict unit_id that contains the unit quality scores (float). |
99
|
|
|
aqs: Dict of annotation_id (string) that contains the annotation quality scores (float). |
100
|
|
|
wqs: Dict of worker_id (string) that contains the worker quality scores (float). |
101
|
|
|
|
102
|
|
|
Returns: |
103
|
|
|
The worker unit agreement score for the given worker. |
104
|
|
|
""" |
105
|
|
|
|
106
|
1 |
|
wsa_numerator = 0.0 |
107
|
1 |
|
wsa_denominator = 0.0 |
108
|
1 |
|
work_unit_ann_dict_worker_id = work_unit_ann_dict[worker_id] |
109
|
|
|
|
110
|
1 |
|
for unit_id in work_unit_ann_dict_worker_id: |
111
|
1 |
|
numerator = 0.0 |
112
|
1 |
|
denominator_w = 0.0 |
113
|
1 |
|
denominator_s = 0.0 |
114
|
|
|
|
115
|
1 |
|
worker_vector = work_unit_ann_dict[worker_id][unit_id] |
116
|
1 |
|
unit_vector = unit_ann_dict[unit_id] |
117
|
|
|
|
118
|
1 |
|
for ann in worker_vector: |
119
|
1 |
|
worker_vector_ann = worker_vector[ann] * wqs |
120
|
1 |
|
unit_vector_ann = unit_vector[ann] |
121
|
|
|
|
122
|
1 |
|
numerator += aqs[ann] * worker_vector_ann * \ |
123
|
|
|
(unit_vector_ann - worker_vector_ann) |
124
|
1 |
|
denominator_w += aqs[ann] * \ |
125
|
|
|
(worker_vector_ann * worker_vector_ann) |
126
|
1 |
|
denominator_s += aqs[ann] * ( \ |
127
|
|
|
(unit_vector_ann - worker_vector_ann) * \ |
128
|
|
|
(unit_vector_ann - worker_vector_ann)) |
129
|
1 |
|
weighted_cosine = None |
130
|
1 |
|
if math.sqrt(denominator_w * denominator_s) < SMALL_NUMBER_CONST: |
131
|
1 |
|
weighted_cosine = SMALL_NUMBER_CONST |
132
|
|
|
else: |
133
|
1 |
|
weighted_cosine = numerator / math.sqrt(denominator_w * denominator_s) |
134
|
1 |
|
wsa_numerator += weighted_cosine * uqs[unit_id] |
135
|
1 |
|
wsa_denominator += uqs[unit_id] |
136
|
1 |
|
if wsa_denominator < SMALL_NUMBER_CONST: |
137
|
1 |
|
wsa_denominator = SMALL_NUMBER_CONST |
138
|
1 |
|
return wsa_numerator / wsa_denominator |
139
|
|
|
|
140
|
|
|
# Worker - Worker Agreement |
141
|
1 |
|
@staticmethod |
142
|
|
|
def worker_worker_agreement(worker_id, work_unit_ann_dict, unit_work_ann_dict, wqs, uqs, aqs): |
143
|
|
|
""" |
144
|
|
|
Computes the agreement between every two workers. |
145
|
|
|
|
146
|
|
|
The worker-worker agreement (WWA) is the average cosine distance between the annotations of |
147
|
|
|
a worker i and all other workers that have worked on the same media units as worker i, |
148
|
|
|
weighted by the worker and annotation qualities. |
149
|
|
|
|
150
|
|
|
The metric gives an indication as to whether there are consisently like-minded workers. |
151
|
|
|
This is useful for identifying communities of thought. |
152
|
|
|
|
153
|
|
|
Through the weighted average, workers and annotations with lower quality will have less |
154
|
|
|
of an impact on the final score of the given worker. |
155
|
|
|
|
156
|
|
|
Args: |
157
|
|
|
worker_id: Worker id. |
158
|
|
|
work_unit_ann_dict: Dictionary of worker annotation vectors on annotated units. |
159
|
|
|
unit_work_ann_dict: Dictionary of unit annotation vectors. |
160
|
|
|
uqs: Dict unit_id that contains the unit quality scores (float). |
161
|
|
|
aqs: Dict of annotation_id (string) that contains the annotation quality scores (float). |
162
|
|
|
wqs: Dict of worker_id (string) that contains the worker quality scores (float). |
163
|
|
|
|
164
|
|
|
Returns: |
165
|
|
|
The worker worker agreement score for the given worker. |
166
|
|
|
""" |
167
|
|
|
|
168
|
1 |
|
wwa_numerator = 0.0 |
169
|
1 |
|
wwa_denominator = 0.0 |
170
|
|
|
|
171
|
1 |
|
worker_vector = work_unit_ann_dict[worker_id] |
172
|
1 |
|
unit_ids = list(work_unit_ann_dict[worker_id].keys()) |
173
|
|
|
|
174
|
1 |
|
for unit_id in unit_ids: |
175
|
1 |
|
wv_unit_id = worker_vector[unit_id] |
176
|
1 |
|
unit_work_ann_dict_unit_id = unit_work_ann_dict[unit_id] |
177
|
1 |
|
for other_workid in unit_work_ann_dict_unit_id: |
178
|
1 |
|
if worker_id != other_workid: |
179
|
1 |
|
numerator = 0.0 |
180
|
1 |
|
denominator_w = 0.0 |
181
|
1 |
|
denominator_ow = 0.0 |
182
|
|
|
|
183
|
1 |
|
unit_work_ann_dict_uid_oworkid = unit_work_ann_dict_unit_id[other_workid] |
184
|
1 |
|
for ann in wv_unit_id: |
185
|
1 |
|
unit_work_ann_dict_uid_oworkid_ann = unit_work_ann_dict_uid_oworkid[ann] |
186
|
1 |
|
wv_unit_id_ann = wv_unit_id[ann] |
187
|
|
|
|
188
|
1 |
|
numerator += aqs[ann] * (wv_unit_id_ann * \ |
189
|
|
|
unit_work_ann_dict_uid_oworkid_ann) |
190
|
|
|
|
191
|
1 |
|
denominator_w += aqs[ann] * (wv_unit_id_ann * wv_unit_id_ann) |
192
|
|
|
|
193
|
1 |
|
denominator_ow += aqs[ann] * \ |
194
|
|
|
(unit_work_ann_dict_uid_oworkid_ann *\ |
195
|
|
|
unit_work_ann_dict_uid_oworkid_ann) |
196
|
1 |
|
denominator = math.sqrt(denominator_w * denominator_ow) |
197
|
1 |
|
if denominator < SMALL_NUMBER_CONST: |
198
|
|
|
denominator = SMALL_NUMBER_CONST |
199
|
1 |
|
weighted_cosine = numerator / denominator |
200
|
|
|
#weighted_cosine = numerator / math.sqrt(denominator_w * denominator_ow) |
201
|
|
|
# pdb.set_trace() |
202
|
1 |
|
wwa_numerator += weighted_cosine * wqs[other_workid] * uqs[unit_id] |
203
|
1 |
|
wwa_denominator += wqs[other_workid] * uqs[unit_id] |
204
|
1 |
|
if wwa_denominator < SMALL_NUMBER_CONST: |
205
|
1 |
|
wwa_denominator = SMALL_NUMBER_CONST |
206
|
1 |
|
return wwa_numerator / wwa_denominator |
207
|
|
|
|
208
|
|
|
|
209
|
|
|
|
210
|
|
|
# Unit - Annotation Score (UAS) |
211
|
1 |
|
@staticmethod |
212
|
|
|
def unit_annotation_score(unit_id, annotation, unit_work_annotation_dict, wqs): |
213
|
|
|
""" |
214
|
|
|
Computes the unit annotation score. |
215
|
|
|
|
216
|
|
|
The unit - annotation score (UAS) calculates the likelihood that annotation a |
217
|
|
|
is expressed in unit u. It is the ratio of the number of workers that picked |
218
|
|
|
annotation a over all workers that annotated the unit, weighted by the worker quality. |
219
|
|
|
|
220
|
|
|
Args: |
221
|
|
|
unit_id: Unit id. |
222
|
|
|
annotation: Annotation. |
223
|
|
|
unit_work_annotation_dict: Dictionary of unit annotation vectors. |
224
|
|
|
wqs: Dict of worker_id (string) that contains the worker quality scores (float). |
225
|
|
|
|
226
|
|
|
Returns: |
227
|
|
|
The unit annotation score for the given unit and annotation. |
228
|
|
|
""" |
229
|
|
|
|
230
|
1 |
|
uas_numerator = 0.0 |
231
|
1 |
|
uas_denominator = 0.0 |
232
|
|
|
|
233
|
1 |
|
worker_ids = unit_work_annotation_dict[unit_id] |
234
|
1 |
|
for worker_id in worker_ids: |
235
|
1 |
|
uas_numerator += worker_ids[worker_id][annotation] * wqs[worker_id] |
236
|
1 |
|
uas_denominator += wqs[worker_id] |
237
|
1 |
|
if uas_denominator < SMALL_NUMBER_CONST: |
238
|
1 |
|
uas_denominator = SMALL_NUMBER_CONST |
239
|
1 |
|
return uas_numerator / uas_denominator |
240
|
|
|
|
241
|
1 |
|
@staticmethod |
242
|
|
|
def compute_ann_quality_factors(numerator, denominator, work_unit_ann_dict_worker_i, \ |
243
|
|
|
work_unit_ann_dict_worker_j, ann, uqs): |
244
|
|
|
""" |
245
|
|
|
Computes the factors for each unit annotation. |
246
|
|
|
|
247
|
|
|
Args: |
248
|
|
|
numerator: Current numerator |
249
|
|
|
denominator: Current denominator |
250
|
|
|
work_unit_ann_dict_worker_i: Dict of worker i annotation vectors on annotated units. |
251
|
|
|
work_unit_ann_dict_worker_j: Dict of worker j annotation vectors on annotated units. |
252
|
|
|
ann: Annotation value |
253
|
|
|
uqs: Dict unit_id that contains the unit quality scores (float). |
254
|
|
|
|
255
|
|
|
Returns: |
256
|
|
|
The annotation quality factors. |
257
|
|
|
""" |
258
|
1 |
|
for unit_id, work_unit_ann_dict_work_i_unit in work_unit_ann_dict_worker_i.items(): |
259
|
1 |
|
if unit_id in work_unit_ann_dict_worker_j: |
260
|
1 |
|
work_unit_ann_dict_work_j_unit = work_unit_ann_dict_worker_j[unit_id] |
261
|
|
|
|
262
|
1 |
|
work_unit_ann_dict_wj_unit_ann = work_unit_ann_dict_work_j_unit[ann] |
263
|
|
|
|
264
|
1 |
|
def compute_numerator_aqs(unit_id_ann_value, worker_i_ann_value, \ |
265
|
|
|
worker_j_ann_value): |
266
|
|
|
""" compute numerator """ |
267
|
1 |
|
numerator = unit_id_ann_value * worker_i_ann_value * \ |
268
|
|
|
worker_j_ann_value |
269
|
1 |
|
return numerator |
270
|
|
|
|
271
|
1 |
|
def compute_denominator_aqs(unit_id_ann_value, worker_j_ann_value): |
272
|
|
|
""" compute denominator """ |
273
|
1 |
|
denominator = unit_id_ann_value * worker_j_ann_value |
274
|
1 |
|
return denominator |
275
|
|
|
|
276
|
1 |
|
numerator += compute_numerator_aqs(uqs[unit_id], \ |
277
|
|
|
work_unit_ann_dict_work_i_unit[ann], \ |
278
|
|
|
work_unit_ann_dict_wj_unit_ann) |
279
|
1 |
|
denominator += compute_denominator_aqs(uqs[unit_id], \ |
280
|
|
|
work_unit_ann_dict_wj_unit_ann) |
281
|
1 |
|
return numerator, denominator |
282
|
|
|
|
283
|
1 |
|
@staticmethod |
284
|
|
|
def aqs_dict(annotations, aqs_numerator, aqs_denominator): |
285
|
|
|
""" |
286
|
|
|
Create the dictionary of annotation quality score values. |
287
|
|
|
|
288
|
|
|
Args: |
289
|
|
|
annotations: Dictionary of annotations. |
290
|
|
|
aqs_numerator: Annotation numerator. |
291
|
|
|
aqs_denominator: Annotation denominator. |
292
|
|
|
|
293
|
|
|
|
294
|
|
|
Returns: |
295
|
|
|
The dictionary of annotation quality scores. |
296
|
|
|
""" |
297
|
|
|
|
298
|
1 |
|
aqs = dict() |
299
|
1 |
|
for ann in annotations: |
300
|
1 |
|
if aqs_denominator[ann] > SMALL_NUMBER_CONST: |
301
|
1 |
|
aqs[ann] = aqs_numerator[ann] / aqs_denominator[ann] |
302
|
|
|
# prevent division by zero by storing very small value instead |
303
|
1 |
|
if aqs[ann] < SMALL_NUMBER_CONST: |
304
|
1 |
|
aqs[ann] = SMALL_NUMBER_CONST |
305
|
|
|
else: |
306
|
1 |
|
aqs[ann] = SMALL_NUMBER_CONST |
307
|
1 |
|
return aqs |
308
|
|
|
|
309
|
|
|
|
310
|
|
|
# Annotation Quality Score (AQS) |
311
|
1 |
|
@staticmethod |
312
|
|
|
def annotation_quality_score(annotations, work_unit_ann_dict, uqs, wqs): |
313
|
|
|
""" |
314
|
|
|
Computes the annotation quality score. |
315
|
|
|
|
316
|
|
|
The annotation quality score AQS calculates the agreement of selecting an annotation a, |
317
|
|
|
over all the units it appears in. Therefore, it is only applicable to closed tasks, where |
318
|
|
|
the same annotation set is used for all units. It is based on the probability that if a |
319
|
|
|
worker j annotates annotation a in a unit, worker i will also annotate it. |
320
|
|
|
|
321
|
|
|
The annotation quality score is the weighted average of these probabilities for all possible |
322
|
|
|
pairs of workers. Through the weighted average, units and workers with lower quality will |
323
|
|
|
have less of an impact on the final score of the annotation. |
324
|
|
|
|
325
|
|
|
Args: |
326
|
|
|
annotations: Possible annotations. |
327
|
|
|
work_unit_annotation_dict: Dictionary of worker annotation vectors on annotated units. |
328
|
|
|
uqs: Dict unit_id that contains the unit quality scores (float). |
329
|
|
|
wqs: Dict of worker_id (string) that contains the worker quality scores (float). |
330
|
|
|
|
331
|
|
|
Returns: |
332
|
|
|
The worker worker agreement score for the given worker. |
333
|
|
|
""" |
334
|
|
|
|
335
|
1 |
|
aqs_numerator = dict() |
336
|
1 |
|
aqs_denominator = dict() |
337
|
|
|
|
338
|
1 |
|
for ann in annotations: |
339
|
1 |
|
aqs_numerator[ann] = 0.0 |
340
|
1 |
|
aqs_denominator[ann] = 0.0 |
341
|
|
|
|
342
|
1 |
|
for worker_i, work_unit_ann_dict_worker_i in work_unit_ann_dict.items(): |
343
|
|
|
#work_unit_ann_dict_worker_i = work_unit_ann_dict[worker_i] |
344
|
1 |
|
work_unit_ann_dict_i_keys = list(work_unit_ann_dict_worker_i.keys()) |
345
|
1 |
|
for worker_j, work_unit_ann_dict_worker_j in work_unit_ann_dict.items(): |
346
|
|
|
#work_unit_ann_dict_worker_j = work_unit_ann_dict[worker_j] |
347
|
1 |
|
work_unit_ann_dict_j_keys = list(work_unit_ann_dict_worker_j.keys()) |
348
|
|
|
|
349
|
1 |
|
length_keys = len(np.intersect1d(np.array(work_unit_ann_dict_i_keys), \ |
350
|
|
|
np.array(work_unit_ann_dict_j_keys))) |
351
|
|
|
|
352
|
1 |
|
if worker_i != worker_j and length_keys > 0: |
353
|
1 |
|
for ann in annotations: |
354
|
1 |
|
numerator = 0.0 |
355
|
1 |
|
denominator = 0.0 |
356
|
|
|
|
357
|
1 |
|
numerator, denominator = Metrics.compute_ann_quality_factors(numerator, \ |
358
|
|
|
denominator, work_unit_ann_dict_worker_i, \ |
359
|
|
|
work_unit_ann_dict_worker_j, ann, uqs) |
360
|
|
|
|
361
|
1 |
|
if denominator > 0: |
362
|
1 |
|
aqs_numerator[ann] += wqs[worker_i] * wqs[worker_j] * \ |
363
|
|
|
numerator / denominator |
364
|
1 |
|
aqs_denominator[ann] += wqs[worker_i] * wqs[worker_j] |
365
|
|
|
|
366
|
1 |
|
return Metrics.aqs_dict(annotations, aqs_numerator, aqs_denominator) |
367
|
|
|
|
368
|
|
|
|
369
|
1 |
|
@staticmethod |
370
|
1 |
|
def run(results, config, max_delta=0.001): |
371
|
|
|
''' |
372
|
|
|
iteratively run the CrowdTruth metrics |
373
|
|
|
''' |
374
|
|
|
|
375
|
1 |
|
judgments = results['judgments'].copy() |
376
|
1 |
|
units = results['units'].copy() |
377
|
|
|
|
378
|
|
|
# unit_work_ann_dict, work_unit_ann_dict, unit_ann_dict |
379
|
|
|
# to be done: change to use all vectors in one unit |
380
|
1 |
|
col = list(config.output.values())[0] |
381
|
1 |
|
unit_ann_dict = dict(units.copy()[col]) |
382
|
|
|
|
383
|
1 |
|
def expanded_vector(worker, unit): |
384
|
|
|
''' |
385
|
|
|
expand the vector of a worker on a given unit |
386
|
|
|
''' |
387
|
1 |
|
vector = Counter() |
388
|
1 |
|
for ann in unit: |
389
|
1 |
|
if ann in worker: |
390
|
1 |
|
vector[ann] = worker[ann] |
391
|
|
|
else: |
392
|
1 |
|
vector[ann] = 0 |
393
|
1 |
|
return vector |
394
|
|
|
|
395
|
|
|
# fill judgment vectors with unit keys |
396
|
1 |
|
for index, row in judgments.iterrows(): |
397
|
1 |
|
judgments.at[index, col] = expanded_vector(row[col], units.at[row['unit'], col]) |
398
|
|
|
|
399
|
1 |
|
unit_work_ann_dict = judgments[['unit', 'worker', col]].copy().groupby('unit') |
400
|
1 |
|
unit_work_ann_dict = {name : group.set_index('worker')[col].to_dict() \ |
401
|
|
|
for name, group in unit_work_ann_dict} |
402
|
|
|
|
403
|
1 |
|
work_unit_ann_dict = judgments[['worker', 'unit', col]].copy().groupby('worker') |
404
|
1 |
|
work_unit_ann_dict = {name : group.set_index('unit')[col].to_dict() \ |
405
|
|
|
for name, group in work_unit_ann_dict} |
406
|
|
|
|
407
|
|
|
#initialize data structures |
408
|
1 |
|
uqs_list = list() |
409
|
1 |
|
wqs_list = list() |
410
|
1 |
|
wwa_list = list() |
411
|
1 |
|
wsa_list = list() |
412
|
1 |
|
aqs_list = list() |
413
|
|
|
|
414
|
1 |
|
uqs = dict((unit_id, 1.0) for unit_id in unit_work_ann_dict) |
415
|
1 |
|
wqs = dict((worker_id, 1.0) for worker_id in work_unit_ann_dict) |
416
|
1 |
|
wwa = dict((worker_id, 1.0) for worker_id in work_unit_ann_dict) |
417
|
1 |
|
wsa = dict((worker_id, 1.0) for worker_id in work_unit_ann_dict) |
418
|
|
|
|
419
|
1 |
|
uqs_list.append(uqs.copy()) |
420
|
1 |
|
wqs_list.append(wqs.copy()) |
421
|
1 |
|
wwa_list.append(wwa.copy()) |
422
|
1 |
|
wsa_list.append(wsa.copy()) |
423
|
|
|
|
424
|
1 |
|
def init_aqs(config, unit_ann_dict): |
425
|
|
|
""" initialize aqs depending on whether or not it is an open ended task """ |
426
|
1 |
|
aqs = dict() |
427
|
1 |
|
if not config.open_ended_task: |
428
|
1 |
|
aqs_keys = list(unit_ann_dict[list(unit_ann_dict.keys())[0]].keys()) |
429
|
1 |
|
for ann in aqs_keys: |
430
|
1 |
|
aqs[ann] = 1.0 |
431
|
|
|
else: |
432
|
1 |
|
for unit_id in unit_ann_dict: |
433
|
1 |
|
for ann in unit_ann_dict[unit_id]: |
434
|
1 |
|
aqs[ann] = 1.0 |
435
|
1 |
|
return aqs |
436
|
|
|
|
437
|
1 |
|
aqs = init_aqs(config, unit_ann_dict) |
438
|
1 |
|
aqs_list.append(aqs.copy()) |
439
|
|
|
|
440
|
1 |
|
uqs_len = len(list(uqs.keys())) * 1.0 |
441
|
1 |
|
wqs_len = len(list(wqs.keys())) * 1.0 |
442
|
1 |
|
aqs_len = len(list(aqs.keys())) * 1.0 |
443
|
|
|
|
444
|
|
|
# compute metrics until stable values |
445
|
1 |
|
iterations = 0 |
446
|
1 |
|
while max_delta >= 0.001: |
447
|
1 |
|
uqs_new = dict() |
448
|
1 |
|
wqs_new = dict() |
449
|
1 |
|
wwa_new = dict() |
450
|
1 |
|
wsa_new = dict() |
451
|
|
|
|
452
|
1 |
|
avg_uqs_delta = 0.0 |
453
|
1 |
|
avg_wqs_delta = 0.0 |
454
|
1 |
|
avg_aqs_delta = 0.0 |
455
|
1 |
|
max_delta = 0.0 |
456
|
|
|
|
457
|
|
|
# pdb.set_trace() |
458
|
|
|
|
459
|
1 |
|
def compute_wqs(wwa_new, wsa_new, wqs_new, work_unit_ann_dict, unit_ann_dict, \ |
460
|
|
|
unit_work_ann_dict, wqs_list, uqs_list, aqs_list, wqs_len, \ |
461
|
|
|
max_delta, avg_wqs_delta): |
462
|
|
|
""" compute worker quality score (WQS) """ |
463
|
1 |
|
for worker_id, _ in work_unit_ann_dict.items(): |
464
|
1 |
|
wwa_new[worker_id] = Metrics.worker_worker_agreement( \ |
465
|
|
|
worker_id, work_unit_ann_dict, \ |
466
|
|
|
unit_work_ann_dict, \ |
467
|
|
|
wqs_list[len(wqs_list) - 1], \ |
468
|
|
|
uqs_list[len(uqs_list) - 1], \ |
469
|
|
|
aqs_list[len(aqs_list) - 1]) |
470
|
1 |
|
wsa_new[worker_id] = Metrics.worker_unit_agreement( \ |
471
|
|
|
worker_id, \ |
472
|
|
|
unit_ann_dict, \ |
473
|
|
|
work_unit_ann_dict, \ |
474
|
|
|
uqs_list[len(uqs_list) - 1], \ |
475
|
|
|
aqs_list[len(aqs_list) - 1], \ |
476
|
|
|
wqs_list[len(wqs_list) - 1][worker_id]) |
477
|
1 |
|
wqs_new[worker_id] = wwa_new[worker_id] * wsa_new[worker_id] |
478
|
1 |
|
max_delta = max(max_delta, \ |
479
|
|
|
abs(wqs_new[worker_id] - wqs_list[len(wqs_list) - 1][worker_id])) |
480
|
1 |
|
avg_wqs_delta += abs(wqs_new[worker_id] - \ |
481
|
|
|
wqs_list[len(wqs_list) - 1][worker_id]) |
482
|
1 |
|
avg_wqs_delta /= wqs_len |
483
|
|
|
|
484
|
1 |
|
return wwa_new, wsa_new, wqs_new, max_delta, avg_wqs_delta |
485
|
|
|
|
486
|
1 |
|
def compute_aqs(aqs, work_unit_ann_dict, uqs_list, wqs_list, aqs_list, aqs_len, max_delta, avg_aqs_delta): |
487
|
|
|
""" compute annotation quality score (aqs) """ |
488
|
1 |
|
aqs_new = Metrics.annotation_quality_score(list(aqs.keys()), work_unit_ann_dict, \ |
489
|
|
|
uqs_list[len(uqs_list) - 1], \ |
490
|
|
|
wqs_list[len(wqs_list) - 1]) |
491
|
1 |
|
for ann, _ in aqs_new.items(): |
492
|
1 |
|
max_delta = max(max_delta, abs(aqs_new[ann] - aqs_list[len(aqs_list) - 1][ann])) |
493
|
1 |
|
avg_aqs_delta += abs(aqs_new[ann] - aqs_list[len(aqs_list) - 1][ann]) |
494
|
1 |
|
avg_aqs_delta /= aqs_len |
495
|
1 |
|
return aqs_new, max_delta, avg_aqs_delta |
496
|
|
|
|
497
|
1 |
|
def compute_uqs(uqs_new, unit_work_ann_dict, wqs_list, aqs_list, uqs_list, uqs_len, max_delta, avg_uqs_delta): |
498
|
|
|
""" compute unit quality score (uqs) """ |
499
|
1 |
|
for unit_id, _ in unit_work_ann_dict.items(): |
500
|
1 |
|
uqs_new[unit_id] = Metrics.unit_quality_score(unit_id, unit_work_ann_dict, \ |
501
|
|
|
wqs_list[len(wqs_list) - 1], \ |
502
|
|
|
aqs_list[len(aqs_list) - 1]) |
503
|
1 |
|
max_delta = max(max_delta, \ |
504
|
|
|
abs(uqs_new[unit_id] - uqs_list[len(uqs_list) - 1][unit_id])) |
505
|
1 |
|
avg_uqs_delta += abs(uqs_new[unit_id] - uqs_list[len(uqs_list) - 1][unit_id]) |
506
|
1 |
|
avg_uqs_delta /= uqs_len |
507
|
1 |
|
return uqs_new, max_delta, avg_uqs_delta |
508
|
|
|
|
509
|
1 |
|
def reconstruct_unit_ann_dict(unit_ann_dict, work_unit_ann_dict, wqs_new): |
510
|
|
|
""" reconstruct unit_ann_dict with worker scores """ |
511
|
1 |
|
new_unit_ann_dict = dict() |
512
|
1 |
|
for unit_id, ann_dict in unit_ann_dict.items(): |
513
|
1 |
|
new_unit_ann_dict[unit_id] = dict() |
514
|
1 |
|
for ann, _ in ann_dict.items(): |
515
|
1 |
|
new_unit_ann_dict[unit_id][ann] = 0.0 |
516
|
1 |
|
for work_id, srd in work_unit_ann_dict.items(): |
517
|
1 |
|
wqs_work_id = wqs_new[work_id] |
518
|
1 |
|
for unit_id, ann_dict in srd.items(): |
519
|
1 |
|
for ann, score in ann_dict.items(): |
520
|
1 |
|
new_unit_ann_dict[unit_id][ann] += score * wqs_work_id |
521
|
|
|
|
522
|
1 |
|
return new_unit_ann_dict |
523
|
|
|
|
524
|
1 |
|
if not config.open_ended_task: |
525
|
|
|
# compute annotation quality score (aqs) |
526
|
1 |
|
aqs_new, max_delta, avg_aqs_delta = compute_aqs(aqs, work_unit_ann_dict, \ |
527
|
|
|
uqs_list, wqs_list, aqs_list, aqs_len, max_delta, avg_aqs_delta) |
528
|
|
|
|
529
|
|
|
# compute unit quality score (uqs) |
530
|
1 |
|
uqs_new, max_delta, avg_uqs_delta = compute_uqs(uqs_new, unit_work_ann_dict, \ |
531
|
|
|
wqs_list, aqs_list, uqs_list, uqs_len, max_delta, avg_uqs_delta) |
532
|
|
|
|
533
|
|
|
# compute worker quality score (WQS) |
534
|
1 |
|
wwa_new, wsa_new, wqs_new, max_delta, avg_wqs_delta = compute_wqs(\ |
535
|
|
|
wwa_new, wsa_new, wqs_new, \ |
536
|
|
|
work_unit_ann_dict, unit_ann_dict, unit_work_ann_dict, wqs_list, \ |
537
|
|
|
uqs_list, aqs_list, wqs_len, max_delta, avg_wqs_delta) |
538
|
|
|
|
539
|
|
|
# save results for current iteration |
540
|
1 |
|
uqs_list.append(uqs_new.copy()) |
541
|
1 |
|
wqs_list.append(wqs_new.copy()) |
542
|
1 |
|
wwa_list.append(wwa_new.copy()) |
543
|
1 |
|
wsa_list.append(wsa_new.copy()) |
544
|
1 |
|
if not config.open_ended_task: |
545
|
1 |
|
aqs_list.append(aqs_new.copy()) |
|
|
|
|
546
|
1 |
|
iterations += 1 |
547
|
|
|
|
548
|
1 |
|
unit_ann_dict = reconstruct_unit_ann_dict(unit_ann_dict, work_unit_ann_dict, wqs_new) |
549
|
|
|
|
550
|
1 |
|
logging.info(str(iterations) + " iterations; max d= " + str(max_delta) + \ |
551
|
|
|
" ; wqs d= " + str(avg_wqs_delta) + "; uqs d= " + str(avg_uqs_delta) + \ |
552
|
|
|
"; aqs d= " + str(avg_aqs_delta)) |
553
|
|
|
|
554
|
1 |
|
def save_unit_ann_score(unit_ann_dict, unit_work_ann_dict, iteration_value): |
555
|
|
|
""" save the unit annotation score for print """ |
556
|
1 |
|
uas = Counter() |
557
|
1 |
|
for unit_id in unit_ann_dict: |
558
|
1 |
|
uas[unit_id] = Counter() |
559
|
1 |
|
for ann in unit_ann_dict[unit_id]: |
560
|
1 |
|
uas[unit_id][ann] = Metrics.unit_annotation_score(unit_id, \ |
561
|
|
|
ann, unit_work_ann_dict, \ |
562
|
|
|
iteration_value) |
563
|
1 |
|
return uas |
564
|
|
|
|
565
|
1 |
|
uas = save_unit_ann_score(unit_ann_dict, unit_work_ann_dict, wqs_list[len(wqs_list) - 1]) |
566
|
1 |
|
uas_initial = save_unit_ann_score(unit_ann_dict, unit_work_ann_dict, wqs_list[0]) |
567
|
|
|
|
568
|
1 |
|
results['units']['uqs'] = pd.Series(uqs_list[-1]) |
569
|
1 |
|
results['units']['unit_annotation_score'] = pd.Series(uas) |
570
|
1 |
|
results['workers']['wqs'] = pd.Series(wqs_list[-1]) |
571
|
1 |
|
results['workers']['wwa'] = pd.Series(wwa_list[-1]) |
572
|
1 |
|
results['workers']['wsa'] = pd.Series(wsa_list[-1]) |
573
|
1 |
|
if not config.open_ended_task: |
574
|
1 |
|
results['annotations']['aqs'] = pd.Series(aqs_list[-1]) |
575
|
|
|
|
576
|
1 |
|
results['units']['uqs_initial'] = pd.Series(uqs_list[1]) |
577
|
1 |
|
results['units']['unit_annotation_score_initial'] = pd.Series(uas_initial) |
578
|
1 |
|
results['workers']['wqs_initial'] = pd.Series(wqs_list[1]) |
579
|
1 |
|
results['workers']['wwa_initial'] = pd.Series(wwa_list[1]) |
580
|
1 |
|
results['workers']['wsa_initial'] = pd.Series(wsa_list[1]) |
581
|
1 |
|
if not config.open_ended_task: |
582
|
1 |
|
results['annotations']['aqs_initial'] = pd.Series(aqs_list[1]) |
583
|
|
|
return results |
584
|
|
|
|