GitHub Access Token became invalid

It seems like the GitHub access token used for retrieving details about this repository from GitHub became invalid. This might prevent certain types of inspections from being run (in particular, everything related to pull requests).
Please ask an admin of your repository to re-new the access token on this website.

crowd_vs_expert_performance   A
last analyzed

Complexity

Total Complexity 16

Size/Duplication

Total Lines 92
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 16
eloc 61
dl 0
loc 92
rs 10
c 0
b 0
f 0

7 Functions

Rating   Name   Duplication   Size   Complexity  
A compute_precision() 0 5 2
A compute_recall() 0 5 2
A compute_crowd_performance() 0 26 2
A count_positives_and_negatives() 0 19 5
A compute_majority_vote() 0 13 1
A compute_f1score() 0 5 2
A compute_accuracy() 0 6 2
1
#!/usr/bin/env python2
2
# -*- coding: utf-8 -*-
3
"""
4
Created on Thu Apr 26 11:39:03 2018
5
"""
6
7
def compute_precision(true_positive, false_positive):
8
    """ Function to compute Precision"""
9
    if true_positive == 0:
10
        return 0
11
    return float(true_positive) / float(true_positive + false_positive)
12
13
def compute_recall(true_positive, false_negative):
14
    """ Function to compute Recall"""
15
    if true_positive == 0:
16
        return 0
17
    return float(true_positive) / float(true_positive + false_negative)
18
19
def compute_accuracy(true_positive, true_negative, false_positive, false_negative):
20
    """ Function to compute Accuracy"""
21
    if true_positive + true_negative == 0:
22
        return 0
23
    return float(true_positive + true_negative) / \
24
           float(true_positive + true_negative + false_positive + false_negative)
25
26
def compute_f1score(precision, recall):
27
    """ Function to compute F1 Score"""
28
    if precision * recall == 0:
29
        return 0
30
    return float(2 * precision * recall) / float(precision + recall)
31
32
def compute_crowd_performance(df_crowd_results, crowd_score_column, experts_score_column):
33
    """ Function to evaluate the answers of the crowd at each posible crowd score threshold"""
34
    rows = []
35
    rows.append(["Thresh", "TP", "TN", "FP", "FN", "Precision", "Recall", "Accuracy", "F1-score"])
36
37
    precision = 0.0
38
    recall = 0.0
39
    accuracy = 0.0
40
    f1score = 0.0
41
42
    for i in range(5, 101, 5):
43
        thresh = i / 100.0
44
45
        true_pos, true_neg, false_pos, false_neg = count_positives_and_negatives(df_crowd_results, \
46
                                                  crowd_score_column, experts_score_column, thresh)
47
48
        precision = compute_precision(true_pos, false_pos)
49
        recall = compute_recall(true_pos, false_neg)
50
        accuracy = compute_accuracy(true_pos, true_neg, false_pos, false_neg)
51
        f1score = compute_f1score(precision, recall)
52
53
        row = [thresh, true_pos, true_neg, false_pos, false_neg, \
54
               precision, recall, accuracy, f1score]
55
        rows.append(row)
56
57
    return rows
58
59
def compute_majority_vote(df_crowd_results, crowd_score_column, experts_score_column, no_workers):
60
    """ Function to evaluate the answers of the crowd using majority vote"""
61
62
    true_pos, true_neg, false_pos, false_neg = count_positives_and_negatives(df_crowd_results, \
63
                                            crowd_score_column, experts_score_column, no_workers)
64
65
    precision = compute_precision(true_pos, false_pos)
66
    recall = compute_recall(true_pos, false_neg)
67
    accuracy = compute_accuracy(true_pos, true_neg, false_pos, false_neg)
68
    f1score = compute_f1score(precision, recall)
69
70
    return true_pos, true_neg, false_pos, false_neg, \
71
            precision, recall, accuracy, f1score
72
73
def count_positives_and_negatives(df_crowd_results, crowd_score_col, expert_score_col, crowd_value):
74
    """ Help function for reading the crowd results """
75
    true_positive = 0
76
    true_negative = 0
77
    false_positive = 0
78
    false_negative = 0
79
80
    for j in range(len(df_crowd_results.index)):
81
        if df_crowd_results[crowd_score_col].iloc[j] >= crowd_value:
82
            if df_crowd_results[expert_score_col].iloc[j] == 1:
83
                true_positive = true_positive + 1
84
            else:
85
                false_positive = false_positive + 1
86
        else:
87
            if df_crowd_results[expert_score_col].iloc[j] == 1:
88
                false_negative = false_negative + 1
89
            else:
90
                true_negative = true_negative + 1
91
    return true_positive, true_negative, false_positive, false_negative
92