1
|
|
|
#pylint: disable=W0223 |
2
|
|
|
|
3
|
1 |
|
""" |
4
|
|
|
Module used to process and load the input files to be evaluated with the CrowdTruth metrics. |
5
|
|
|
""" |
6
|
|
|
|
7
|
1 |
|
import os |
8
|
|
|
|
9
|
1 |
|
import logging |
10
|
1 |
|
import datetime |
11
|
1 |
|
from collections import Counter, OrderedDict |
12
|
1 |
|
import dateparser |
13
|
|
|
|
14
|
1 |
|
import pandas as pd |
15
|
|
|
|
16
|
1 |
|
from crowdtruth.models.worker import Worker |
17
|
1 |
|
from crowdtruth.models.unit import Unit |
18
|
1 |
|
from crowdtruth.models.job import Job |
19
|
1 |
|
from crowdtruth.configuration import DefaultConfig |
20
|
1 |
|
from crowdtruth.crowd_platform import * |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
|
24
|
|
|
|
25
|
|
|
# create an ordered counter so that we can maintain |
26
|
|
|
# the position of tags in the order they were annotated |
27
|
1 |
|
class OrderedCounter(Counter, OrderedDict): |
28
|
|
|
""" Instantiates an ordered counter. """ |
29
|
1 |
|
pass |
30
|
|
|
|
31
|
1 |
|
def create_ordered_counter(ordered_counter, annotation_vector): |
32
|
|
|
""" Instantiates an ordered counter from a given annotation vector. """ |
33
|
1 |
|
for relation in annotation_vector: |
34
|
1 |
|
if relation not in ordered_counter: |
35
|
1 |
|
ordered_counter.update({relation: 0}) |
36
|
1 |
|
return ordered_counter |
37
|
|
|
|
38
|
1 |
|
def validate_timestamp_field(date_string, date_format): |
39
|
|
|
""" Validates the time columns (started time and submitted time) in input files. """ |
40
|
|
|
|
41
|
|
|
try: |
42
|
|
|
date_obj = datetime.datetime.strptime(date_string, date_format) |
43
|
|
|
print(date_obj) |
44
|
|
|
except ValueError: |
45
|
|
|
raise ValueError('Incorrect date format') |
46
|
|
|
|
47
|
1 |
|
def get_file_list(directory): |
48
|
|
|
""" List the files in the directry given as argument. """ |
49
|
1 |
|
filelist = [] |
50
|
|
|
|
51
|
|
|
# go through all files in this folder |
52
|
1 |
|
for file in os.listdir(directory): |
53
|
|
|
# if it is a folder scan it |
54
|
1 |
|
if os.path.isdir(directory+'/'+file): |
55
|
|
|
sublist = get_file_list(directory+'/'+file) |
56
|
|
|
sublist_length = len(sublist) |
57
|
|
|
if sublist_length: |
58
|
|
|
filelist.append(sublist) |
59
|
|
|
|
60
|
|
|
# if it is a csv file open it |
61
|
1 |
|
if file.endswith('.csv') and file != 'groundtruth.csv': |
62
|
1 |
|
filelist.append(file) |
63
|
1 |
|
return filelist |
64
|
|
|
|
65
|
1 |
|
def list_files(kwargs, results, config): |
66
|
|
|
""" Creates a list of files to be processed. """ |
67
|
1 |
|
files = [] |
68
|
1 |
|
directory = "" |
69
|
1 |
|
if 'data_frame' in kwargs: |
70
|
1 |
|
res, config = process_file(kwargs['data_frame'], config) |
71
|
1 |
|
for value in res: |
72
|
1 |
|
results[value].append(res[value]) |
73
|
1 |
|
return results |
74
|
1 |
|
elif 'file' in kwargs and kwargs['file'].endswith('.csv'): |
75
|
1 |
|
files = [kwargs['file']] |
76
|
1 |
|
elif 'directory' in kwargs: |
77
|
1 |
|
directory = kwargs['directory'] |
78
|
1 |
|
files = get_file_list(directory) |
79
|
1 |
|
logging.info('Found ' + str(len(files)) + ' files') |
80
|
|
|
else: |
81
|
|
|
raise ValueError('No input was provided') |
82
|
|
|
|
83
|
1 |
|
for file in files: |
84
|
1 |
|
if 'directory' in locals() and directory != "": |
85
|
1 |
|
logging.info("Processing " + file) |
86
|
1 |
|
file = directory + "/" + file |
87
|
1 |
|
if config.csv_file_separator: |
88
|
1 |
|
judgments = pd.read_csv(file, sep=config.csv_file_separator)#, encoding=result['encoding']) |
89
|
|
|
else: |
90
|
|
|
judgments = pd.read_csv(file)#, encoding=result['encoding']) |
91
|
1 |
|
res, config = process_file(judgments, config, filename=file) |
92
|
1 |
|
for value in res: |
93
|
1 |
|
results[value].append(res[value]) |
94
|
|
|
|
95
|
1 |
|
return results |
96
|
|
|
|
97
|
1 |
|
def load(**kwargs): |
98
|
|
|
""" Loads the input files. """ |
99
|
|
|
|
100
|
|
|
# placeholder for aggregated results |
101
|
1 |
|
results = { |
102
|
|
|
'jobs' : [], |
103
|
|
|
'units' : [], |
104
|
|
|
'workers' : [], |
105
|
|
|
'judgments' : [], |
106
|
|
|
'annotations' : [] |
107
|
|
|
} |
108
|
|
|
|
109
|
1 |
|
if 'config' not in kwargs: |
110
|
|
|
config = DefaultConfig() |
111
|
|
|
else: |
112
|
1 |
|
logging.info('Config loaded') |
113
|
1 |
|
config = kwargs['config'] |
114
|
|
|
|
115
|
1 |
|
results = list_files(kwargs, results, config) |
116
|
1 |
|
for value in results: |
117
|
1 |
|
results[value] = pd.concat(results[value]) |
118
|
|
|
|
119
|
|
|
|
120
|
|
|
# workers and annotations can appear across jobs, so we have to aggregate those extra |
121
|
1 |
|
results['workers'] = results['workers'].groupby(results['workers'].index).agg({ |
122
|
|
|
'unit' : 'sum', |
123
|
|
|
'judgment' : 'sum', |
124
|
|
|
'job' : 'count', |
125
|
|
|
'duration' : 'mean' |
126
|
|
|
}) |
127
|
|
|
|
128
|
|
|
# aggregate annotations |
129
|
1 |
|
results['annotations'] = results['annotations'].groupby(results['annotations'].index).sum() |
130
|
|
|
|
131
|
1 |
|
return results, config |
132
|
|
|
|
133
|
1 |
|
def remove_empty_rows(config, judgments): |
134
|
|
|
""" handle rows where the worker did not give an answer (AMT issue) """ |
135
|
|
|
|
136
|
|
|
# if config keeps empty rows, add NONE placehoder token |
137
|
1 |
|
if not config.remove_empty_rows: |
138
|
1 |
|
for col in config.outputColumns: |
139
|
1 |
|
for idx in range(len(judgments[col])): |
140
|
1 |
|
if (pd.isnull(judgments[col][idx]) or |
141
|
|
|
judgments[col][idx] is None or |
142
|
|
|
judgments[col][idx] == '' or |
143
|
|
|
judgments[col][idx] == 'nan'): |
144
|
1 |
|
logging.info('judgments[' + str(idx) + '][' + col + '] is None') |
145
|
1 |
|
judgments.at[idx, col] = config.none_token |
146
|
|
|
# remove empty rows |
147
|
|
|
else: |
148
|
1 |
|
empty_rows = set() |
149
|
1 |
|
for col in config.outputColumns: |
150
|
1 |
|
empty_rows = empty_rows.union(judgments[pd.isnull(judgments[col]) == True].index) |
151
|
1 |
|
empty_rows = empty_rows.union(judgments[judgments[col] == 'nan'].index) |
152
|
1 |
|
for col in config.outputColumns: |
153
|
1 |
|
judgments = judgments[pd.isnull(judgments[col]) == False] |
154
|
1 |
|
judgments = judgments[judgments[col] != 'nan'] |
155
|
1 |
|
judgments = judgments.reset_index(drop=True) |
156
|
1 |
|
count_empty_rows = len(empty_rows) |
157
|
1 |
|
if count_empty_rows > 0: |
158
|
1 |
|
if count_empty_rows == 1: |
159
|
|
|
logging.warning(str(count_empty_rows) + " row with incomplete information in " |
160
|
|
|
"output columns was removed.") |
161
|
|
|
else: |
162
|
1 |
|
logging.warning(str(count_empty_rows) + " rows with incomplete information in " |
163
|
|
|
"output columns were removed.") |
164
|
1 |
|
return judgments |
165
|
|
|
|
166
|
1 |
|
def remove_single_judgment_units(judgments): |
167
|
|
|
""" remove units with just 1 judgment """ |
168
|
1 |
|
units_1work = judgments.groupby('unit').filter(lambda x: len(x) == 1)["unit"] |
169
|
1 |
|
judgments = judgments[~judgments['unit'].isin(units_1work)] |
170
|
1 |
|
judgments = judgments.reset_index(drop=True) |
171
|
1 |
|
no_units_1work = len(units_1work) |
172
|
1 |
|
if no_units_1work > 0: |
173
|
|
|
if no_units_1work == 1: |
174
|
|
|
logging.warning(str(no_units_1work) + " Media Unit that was annotated by only" |
175
|
|
|
" 1 Worker was omitted, since agreement cannot be calculated.") |
176
|
|
|
else: |
177
|
|
|
logging.warning(str(no_units_1work) + " Media Units that were annotated by only" |
178
|
|
|
" 1 Worker were omitted, since agreement cannot be calculated.") |
179
|
1 |
|
return judgments |
180
|
|
|
|
181
|
1 |
|
def make_output_cols_safe_keys(config, judgments): |
182
|
|
|
""" make output values safe keys """ |
183
|
1 |
|
for col in config.output.values(): |
184
|
1 |
|
if isinstance(judgments[col].iloc[0], dict): |
185
|
|
|
logging.info("Values stored as dictionary") |
186
|
|
|
if config.open_ended_task: |
187
|
|
|
judgments[col] = judgments[col].apply(lambda x: OrderedCounter(x)) |
188
|
|
|
else: |
189
|
|
|
judgments[col] = judgments[col].apply(lambda x: create_ordered_counter( \ |
190
|
|
|
OrderedCounter(x), config.annotation_vector)) |
191
|
|
|
else: |
192
|
1 |
|
logging.info("Values not stored as dictionary") |
193
|
1 |
|
if config.open_ended_task: |
194
|
1 |
|
judgments[col] = judgments[col].apply(lambda x: OrderedCounter( \ |
195
|
|
|
x.split(config.annotation_separator))) |
196
|
|
|
else: |
197
|
1 |
|
judgments[col] = judgments[col].apply(lambda x: create_ordered_counter( \ |
198
|
|
|
OrderedCounter(x.split(config.annotation_separator)), \ |
199
|
|
|
config.annotation_vector)) |
200
|
1 |
|
return judgments |
201
|
|
|
|
202
|
|
|
|
203
|
1 |
|
def add_missing_values(config, units): |
204
|
|
|
""" Adds missing vector values if is a closed task """ |
205
|
1 |
|
for col in config.output.values(): |
206
|
1 |
|
try: |
207
|
|
|
# openended = config.open_ended_task |
208
|
1 |
|
for idx in list(units.index): |
209
|
1 |
|
for relation in config.annotation_vector: |
210
|
1 |
|
if relation not in units[col][idx]: |
211
|
1 |
|
units[col][idx].update({relation : 0}) |
212
|
1 |
|
return units |
213
|
|
|
except AttributeError: |
214
|
|
|
continue |
215
|
1 |
|
def aggregate_annotations(config, judgments): |
216
|
|
|
""" Aggregates annotations and adds judgments stats. """ |
217
|
1 |
|
annotations = pd.DataFrame() |
218
|
1 |
|
for col in config.output.values(): |
219
|
1 |
|
judgments[col+'.count'] = judgments[col].apply(lambda x: sum(x.values())) |
220
|
1 |
|
judgments[col+'.unique'] = judgments[col].apply(lambda x: len(x)) |
221
|
1 |
|
res = pd.DataFrame(judgments[col].apply(lambda x: \ |
222
|
|
|
pd.Series(list(x.keys())).value_counts()).sum(), columns=[col]) |
223
|
1 |
|
annotations = pd.concat([annotations, res], axis=0) |
224
|
1 |
|
return annotations, judgments |
225
|
|
|
|
226
|
1 |
|
def process_file(judgments, config, filename=""): |
227
|
|
|
""" Processes input files with the given configuration """ |
228
|
|
|
|
229
|
1 |
|
platform = get_platform(judgments) |
230
|
|
|
|
231
|
1 |
|
if platform is False: |
232
|
1 |
|
logging.info("Custom crowdsourcing platform!") |
233
|
1 |
|
no_of_columns = len(config.customPlatformColumns) |
234
|
1 |
|
if no_of_columns != 5: |
235
|
|
|
logging.warning("The following column names are required: judgment id, " |
236
|
|
|
"unit id, worker id, start time, submit time") |
237
|
|
|
raise ValueError('No custom platform configuration was provided') |
238
|
|
|
else: |
239
|
|
|
|
240
|
1 |
|
platform = { |
241
|
|
|
#'id' : 'custom', |
242
|
|
|
config.customPlatformColumns[0] : 'judgment', |
243
|
|
|
config.customPlatformColumns[1] : 'unit', |
244
|
|
|
config.customPlatformColumns[2] : 'worker', |
245
|
|
|
config.customPlatformColumns[3] : 'started', |
246
|
|
|
config.customPlatformColumns[4] : 'submitted' |
247
|
|
|
} |
248
|
|
|
|
249
|
|
|
|
250
|
|
|
# we must establish which fields were part of the input data and which are output judgments |
251
|
|
|
# if there is a config, check if there is a definition of which fields to use |
252
|
|
|
#config = [] |
253
|
|
|
# else use the default and select them automatically |
254
|
1 |
|
config = get_column_types(judgments, config) |
255
|
|
|
|
256
|
|
|
# allow customization of the judgments |
257
|
1 |
|
judgments = config.processJudgments(judgments) |
258
|
|
|
|
259
|
|
|
# handle empty rows |
260
|
1 |
|
judgments = remove_empty_rows(config, judgments) |
261
|
|
|
|
262
|
|
|
# update the config after the preprocessing of judgments |
263
|
1 |
|
config = get_column_types(judgments, config) |
264
|
|
|
|
265
|
1 |
|
all_columns = dict(list(config.input.items()) + list(config.output.items()) \ |
266
|
|
|
+ list(platform.items())) |
267
|
|
|
# allColumns = dict(config.input.items() | config.output.items() | platform.items()) |
268
|
1 |
|
judgments = judgments.rename(columns=all_columns) |
269
|
|
|
|
270
|
|
|
# remove columns we don't care about |
271
|
1 |
|
judgments = judgments[list(all_columns.values())] |
272
|
|
|
|
273
|
1 |
|
if filename != "": |
274
|
1 |
|
judgments['job'] = filename.split('.csv')[0] |
275
|
|
|
else: |
276
|
1 |
|
judgments['job'] = "pd.DataFrame" |
277
|
|
|
|
278
|
|
|
# make output values safe keys |
279
|
1 |
|
judgments = make_output_cols_safe_keys(config, judgments) |
280
|
|
|
|
281
|
|
|
# remove units with just 1 judgment |
282
|
1 |
|
judgments = remove_single_judgment_units(judgments) |
283
|
|
|
|
284
|
1 |
|
judgments['started'] = judgments['started'].apply(lambda x: dateparser.parse(str(x))) |
285
|
1 |
|
judgments['submitted'] = judgments['submitted'].apply(lambda x: dateparser.parse(str(x))) |
286
|
1 |
|
judgments['duration'] = judgments.apply(lambda row: (row['submitted'] - row['started']).seconds, |
287
|
|
|
axis=1) |
288
|
|
|
|
289
|
|
|
# |
290
|
|
|
# aggregate units |
291
|
|
|
# |
292
|
1 |
|
units = Unit.aggregate(judgments, config) |
293
|
|
|
|
294
|
|
|
# |
295
|
|
|
# aggregate annotations |
296
|
|
|
# i.e. output columns |
297
|
|
|
# |
298
|
1 |
|
annotations, judgments = aggregate_annotations(config, judgments) |
299
|
|
|
|
300
|
|
|
# |
301
|
|
|
# aggregate workers |
302
|
|
|
# |
303
|
1 |
|
workers = Worker.aggregate(judgments, config) |
304
|
|
|
|
305
|
|
|
# |
306
|
|
|
# aggregate job |
307
|
|
|
# |
308
|
1 |
|
job = Job.aggregate(units, judgments, config) |
309
|
|
|
|
310
|
|
|
# Clean up judgments |
311
|
|
|
# remove input columns from judgments |
312
|
1 |
|
output_cols = [col for col in judgments.columns.values \ |
313
|
|
|
if col.startswith('output') or col.startswith('metric')] |
314
|
1 |
|
judgments = judgments[output_cols + list(platform.values()) + ['duration', 'job']] |
315
|
|
|
|
316
|
|
|
# set judgment id as index |
317
|
1 |
|
judgments.set_index('judgment', inplace=True) |
318
|
|
|
|
319
|
|
|
# add missing vector values if closed task |
320
|
1 |
|
units = add_missing_values(config, units) |
321
|
|
|
|
322
|
1 |
|
return { |
323
|
|
|
'jobs' : job, |
324
|
|
|
'units' : units, |
325
|
|
|
'workers' : workers, |
326
|
|
|
'judgments' : judgments, |
327
|
|
|
'annotations' : annotations, |
328
|
|
|
}, config |
329
|
|
|
|