Total Complexity | 42 |
Total Lines | 220 |
Duplicated Lines | 0 % |
Complex classes like topik.fileio.TopikProject often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | import itertools |
||
18 | class TopikProject(object): |
||
19 | def __init__(self, project_name, output_type=None, output_args=None, **kwargs): |
||
20 | """Class that abstracts persistence. Drives different output types, and handles |
||
21 | storing intermediate results to given output type. |
||
22 | |||
23 | output_type : string |
||
24 | internal format for handling user data. Current options are |
||
25 | present in topik.fileio.registered_outputs. default is "InMemoryOutput". |
||
26 | output_args : dictionary or None |
||
27 | configuration to pass through to output |
||
28 | synchronous_wait : integer |
||
29 | number of seconds to wait for data to finish uploading to output, when using an asynchronous |
||
30 | output type. Only relevant for some output types ("ElasticSearchOutput", not "InMemoryOutput") |
||
31 | **kwargs : passed through to superclass __init__. Not passed to output. |
||
32 | """ |
||
33 | if output_args is None: |
||
34 | output_args = {} |
||
35 | if os.path.exists(project_name + ".topikproject") and output_type is None: |
||
36 | with open(project_name + ".topikproject") as project_meta: |
||
37 | project_data = jsonpickle.decode(project_meta.read()) |
||
38 | kwargs.update(project_data) |
||
39 | with open(project_name + ".topikdata") as project_data: |
||
40 | loaded_data = jsonpickle.decode(project_data.read()) |
||
41 | output_type = loaded_data["class"] |
||
42 | output_args.update(loaded_data["saved_data"]) |
||
43 | self.project_name = project_name |
||
44 | if output_type is None: |
||
45 | output_type = "InMemoryOutput" |
||
46 | # loading the output here is sufficient to restore all results: the output is responsible for loading them as |
||
47 | # necessary, and returning iterators or output objects appropriately. |
||
48 | self.output = registered_outputs[output_type](**output_args) |
||
49 | # not used, but stored here for persistence purposes |
||
50 | self._output_type = output_type |
||
51 | self._output_args = output_args |
||
52 | # None or a string expression in Elasticsearch query format |
||
53 | self.corpus_filter = kwargs["corpus_filter"] if "corpus_filter" in kwargs else "" |
||
54 | # None or a string name |
||
55 | self.content_field = kwargs["content_field"] if "content_field" in kwargs else "" |
||
56 | # Initially None, set to string value when tokenize or transform method called |
||
57 | self._selected_source_field = kwargs["_selected_content_field"] if "_selected_content_field" in kwargs else None |
||
58 | # Initially None, set to string value when tokenize or transform method called |
||
59 | self._selected_tokenized_corpus_id = kwargs["_selected_tokenized_corpus_id"] if "_selected_tokenized_corpus_id" in kwargs else None |
||
60 | # Initially None, set to string value when vectorize method called |
||
61 | self._selected_vectorized_corpus_id = kwargs["_selected_vectorized_corpus_id"] if "_selected_vectorized_corpus_id" in kwargs else None |
||
62 | # Initially None, set to string value when run_model method called |
||
63 | self._selected_modeled_corpus_id = kwargs["_selected_modeled_corpus_id"] if "_selected_modeled_corpus_id" in kwargs else None |
||
64 | |||
65 | def __enter__(self): |
||
66 | return self |
||
67 | |||
68 | def __exit__(self, exc_type, exc_val, exc_tb): |
||
69 | self.close() |
||
70 | |||
71 | def close(self): |
||
72 | self.save() |
||
73 | self.output.close() # close any open file handles or network connections |
||
74 | |||
75 | def save(self): |
||
76 | """Save project as .topikproject metafile and some number of sidecar data files.""" |
||
77 | with open(self.project_name + ".topikproject", "w") as f: |
||
78 | f.write(jsonpickle.encode({ |
||
79 | "_selected_tokenized_corpus_id": self._selected_tokenized_corpus_id, |
||
80 | "_selected_vectorized_corpus_id": self._selected_vectorized_corpus_id, |
||
81 | "_selected_modeled_corpus_id": self._selected_modeled_corpus_id, |
||
82 | "corpus_filter": self.corpus_filter, |
||
83 | "project_name": self.project_name, |
||
84 | "output_type": self._output_type, |
||
85 | "output_args": self._output_args, |
||
86 | "content_field": self.content_field}, |
||
87 | f)) |
||
88 | self.output.save(self.project_name + ".topikdata") |
||
89 | |||
90 | def read_input(self, source, content_field, source_type="auto", **kwargs): |
||
91 | """Import data from external source into Topik's internal format""" |
||
92 | self.output.import_from_iterable(read_input(source, |
||
93 | source_type=source_type, |
||
94 | **kwargs), |
||
95 | field_to_hash=content_field) |
||
96 | self.content_field = content_field |
||
97 | |||
98 | def get_filtered_corpus_iterator(self, field=None, filter_expression=None): |
||
99 | if field is None: |
||
100 | field = self.content_field |
||
101 | if filter_expression is None: |
||
102 | filter_expression = self.corpus_filter |
||
103 | return self.output.get_filtered_data(field, filter_expression) |
||
104 | |||
105 | def get_date_filtered_corpus_iterator(self, start, end, filter_field, |
||
106 | field_to_get=None): |
||
107 | if field_to_get is None: |
||
108 | field_to_get = self.content_field |
||
109 | return self.output.get_date_filtered_data(field_to_get=field_to_get, |
||
110 | start=start, |
||
111 | end=end, |
||
112 | filter_field=filter_field) |
||
113 | |||
114 | def tokenize(self, method="simple", **kwargs): |
||
115 | """Break raw text into substituent terms (or collections of terms)""" |
||
116 | # tokenize, and store the results on this object somehow |
||
117 | tokenized_corpus = tokenizers.tokenize(self.selected_filtered_corpus, |
||
118 | method=method, **kwargs) |
||
119 | tokenize_parameter_string = self.corpus_filter + "_tk_{method}{params}".format( |
||
120 | method=method, |
||
121 | params=_get_parameters_string(**kwargs)) |
||
122 | |||
123 | # store this |
||
124 | self.output.tokenized_corpora[tokenize_parameter_string] = tokenized_corpus |
||
125 | # set _tokenizer_id internal handle to point to this data |
||
126 | self._selected_tokenized_corpus_id = tokenize_parameter_string |
||
127 | |||
128 | def transform(self, method, **kwargs): |
||
129 | """Stem or lemmatize input text that has already been tokenized""" |
||
130 | transformed_data = transformers.transform(method=method, **kwargs) |
||
131 | tokenize_parameter_string = "_".join([self.tokenizer_id, "xform", method, |
||
132 | _get_parameters_string(**kwargs)]) |
||
133 | # store this |
||
134 | self.output.tokenized_corpora[tokenize_parameter_string] = transformed_data |
||
135 | # set _tokenizer_id internal handle to point to this data |
||
136 | self._selected_tokenized_corpus_id = tokenize_parameter_string |
||
137 | |||
138 | def vectorize(self, method="bag_of_words", **kwargs): |
||
139 | """Convert tokenized text to vector form - mathematical representation used for modeling.""" |
||
140 | tokenizer_iterators = itertools.tee(self.selected_tokenized_corpus) |
||
141 | vectorized_corpus = vectorizers.vectorize(tokenizer_iterators[0], |
||
142 | method=method, **kwargs) |
||
143 | vectorize_parameter_string = self.corpus_filter + self._selected_tokenized_corpus_id + "_".join([method, _get_parameters_string(**kwargs)]) |
||
144 | # store this internally |
||
145 | self.output.vectorized_corpora[vectorize_parameter_string] = vectorized_corpus |
||
146 | # set _vectorizer_id internal handle to point to this data |
||
147 | self._selected_vectorized_corpus_id = vectorize_parameter_string |
||
148 | |||
149 | def run_model(self, model_name="lda", ntopics=3, **kwargs): |
||
150 | """Analyze vectorized text; determine topics and assign document probabilities""" |
||
151 | if (model_name=='lda') and ('tfidf' in self._selected_vectorized_corpus_id): |
||
152 | raise ValueError('LDA models are incompatible with TF-IDF vectorization. If you wish to use TFIDF vectorization, please select another type of model.') |
||
153 | modeled_corpus = models.run_model(self.selected_vectorized_corpus, |
||
154 | model_name=model_name, |
||
155 | ntopics=ntopics, **kwargs) |
||
156 | model_id = "_".join([model_name, _get_parameters_string(**kwargs)]) |
||
157 | # store this internally |
||
158 | self.output.modeled_corpora[model_id] = modeled_corpus |
||
159 | # set _model_id internal handle to point to this data |
||
160 | self._selected_modeled_corpus_id = model_id |
||
161 | |||
162 | def visualize(self, vis_name='lda_vis', model_id=None, **kwargs): |
||
163 | """Plot model output""" |
||
164 | if not model_id: |
||
165 | modeled_corpus = self.selected_modeled_corpus |
||
166 | else: |
||
167 | modeled_corpus = self.output.model_data[model_id] |
||
168 | return visualizers.visualize(modeled_corpus, vis_name, **kwargs) |
||
169 | |||
170 | def select_tokenized_corpus(self, _id): |
||
171 | """Assign active tokenized corpus. |
||
172 | |||
173 | When more than one tokenized corpus available (ran tokenization more than once with different |
||
174 | methods), this allows you to switch to a different data set. |
||
175 | """ |
||
176 | if _id in self.output.tokenized_corpora: |
||
177 | self._selected_tokenized_corpus_id = _id |
||
178 | else: |
||
179 | raise ValueError("tokenized data {} not found in storage.".format(id)) |
||
180 | |||
181 | def select_vectorized_corpus(self, _id): |
||
182 | """Assign active vectorized corpus. |
||
183 | |||
184 | When more than one vectorized corpus available (ran tokenization more than once with different |
||
185 | methods), this allows you to switch to a different data set. |
||
186 | """ |
||
187 | if _id in self.output.vectorized_corpora: |
||
188 | self._selected_vectorized_corpus_id = _id |
||
189 | else: |
||
190 | raise ValueError("vectorized data {} not found in storage.".format(_id)) |
||
191 | |||
192 | def select_modeled_corpus(self, _id): |
||
193 | """When more than one model output available (ran modeling more than once with different |
||
194 | methods), this allows you to switch to a different data set. |
||
195 | """ |
||
196 | if _id in self.output.modeled_corpus: |
||
197 | self._selected_modeled_corpus_id = _id |
||
198 | else: |
||
199 | raise ValueError("model {} not found in storage.".format(_id)) |
||
200 | |||
201 | @property |
||
202 | def selected_filtered_corpus(self): |
||
203 | """Corpus documents, potentially a subset. |
||
204 | |||
205 | Output from read_input step. |
||
206 | Input to tokenization step. |
||
207 | """ |
||
208 | return self.output.get_filtered_data(field_to_get=self.content_field, |
||
209 | filter=self.corpus_filter) |
||
210 | |||
211 | @property |
||
212 | def selected_tokenized_corpus(self): |
||
213 | """Documents broken into component words. May also be transformed. |
||
214 | |||
215 | Output from tokenization and/or transformation steps. |
||
216 | Input to vectorization step. |
||
217 | """ |
||
218 | return self.output.tokenized_corpora[self._selected_tokenized_corpus_id] |
||
219 | |||
220 | @property |
||
221 | def selected_vectorized_corpus(self): |
||
222 | """Data that has been vectorized into term frequencies, TF/IDF, or |
||
223 | other vector representation. |
||
224 | |||
225 | Output from vectorization step. |
||
226 | Input to modeling step. |
||
227 | """ |
||
228 | return self.output.vectorized_corpora[self._selected_vectorized_corpus_id] |
||
229 | |||
230 | @property |
||
231 | def selected_modeled_corpus(self): |
||
232 | """matrices representing the model derived. |
||
233 | |||
234 | Output from modeling step. |
||
235 | Input to visualization step. |
||
236 | """ |
||
237 | return self.output.modeled_corpora[self._selected_modeled_corpus_id] |
||
238 | |||
239 |
The coding style of this project requires that you add a docstring to this code element. Below, you find an example for methods:
If you would like to know more about docstrings, we recommend to read PEP-257: Docstring Conventions.