1
|
|
|
""" |
2
|
|
|
This module contains common code shared by utils/rule_dir_stats.py and |
3
|
|
|
utils/rule_dir_diff.py. This code includes functions for walking the output |
4
|
|
|
of the utils/rule_dir_json.py script, and filtering functions used in both |
5
|
|
|
scripts. |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
from __future__ import absolute_import |
9
|
|
|
from __future__ import print_function |
10
|
|
|
|
11
|
|
|
import os |
12
|
|
|
from collections import defaultdict |
13
|
|
|
|
14
|
|
|
from .build_remediations import REMEDIATION_TO_EXT_MAP as REMEDIATION_MAP |
15
|
|
|
from .utils import subset_dict |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def get_affected_products(rule_obj): |
19
|
|
|
""" |
20
|
|
|
From a rule_obj, return the set of affected products from rule.yml |
21
|
|
|
""" |
22
|
|
|
return set(rule_obj['products']) |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def get_all_affected_products(args, rule_obj): |
26
|
|
|
""" |
27
|
|
|
From a rule_obj, return the set of affected products from rule.yml, and |
28
|
|
|
all fixes and checks. |
29
|
|
|
|
30
|
|
|
If args.strict is set, this function is equivalent to |
31
|
|
|
get_affected_products. Otherwise, it includes ovals and fix content based |
32
|
|
|
on the values of args.fixes_only and args.ovals_only. |
33
|
|
|
""" |
34
|
|
|
|
35
|
|
|
affected_products = get_affected_products(rule_obj) |
36
|
|
|
|
37
|
|
|
if args.strict: |
38
|
|
|
return affected_products |
39
|
|
|
|
40
|
|
|
if not args.fixes_only: |
41
|
|
|
for product in rule_obj['oval_products']: |
42
|
|
|
affected_products.add(product) |
43
|
|
|
|
44
|
|
|
if not args.ovals_only: |
45
|
|
|
for product in rule_obj['remediation_products']: |
46
|
|
|
affected_products.add(product) |
47
|
|
|
|
48
|
|
|
return affected_products |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
def _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output): |
52
|
|
|
""" |
53
|
|
|
Walks a single rule and updates verbose_output if visited. Returns visited |
54
|
|
|
state as a boolean. |
55
|
|
|
|
56
|
|
|
Internal function for walk_rules and walk_rules_parallel. |
57
|
|
|
""" |
58
|
|
|
|
59
|
|
|
rule_id = rule_obj['id'] |
60
|
|
|
|
61
|
|
|
affected_products = get_all_affected_products(args, rule_obj) |
62
|
|
|
if not affected_products.intersection(args.products): |
63
|
|
|
return False |
64
|
|
|
if args.query and rule_id not in args.query: |
65
|
|
|
return False |
66
|
|
|
|
67
|
|
|
if not args.fixes_only: |
68
|
|
|
result = oval_func(rule_obj) |
69
|
|
|
if result: |
70
|
|
|
verbose_output[rule_id]['oval'] = result |
71
|
|
|
|
72
|
|
|
if not args.ovals_only: |
73
|
|
|
for r_type in REMEDIATION_MAP: |
74
|
|
|
result = remediation_func(rule_obj, r_type) |
75
|
|
|
if result: |
76
|
|
|
verbose_output[rule_id][r_type] = result |
77
|
|
|
|
78
|
|
|
return True |
79
|
|
|
|
80
|
|
|
def walk_rules(args, known_rules, oval_func, remediation_func): |
81
|
|
|
""" |
82
|
|
|
Walk a dictionary of known_rules, returning the number of visited rules |
83
|
|
|
and the output at each visited rule, conditionally calling oval_func and |
84
|
|
|
remediation_func based on the values of args.fixes_only and |
85
|
|
|
args.ovals_only. If the result of these functions are not Falsy, set the |
86
|
|
|
appropriate output content. |
87
|
|
|
|
88
|
|
|
The input rule_obj structure is the value of known_rules[rule_id]. |
89
|
|
|
|
90
|
|
|
The output structure is a dict as follows: |
91
|
|
|
{ |
92
|
|
|
rule_id: { |
93
|
|
|
"oval": oval_func(args, rule_obj), |
94
|
|
|
"ansible": remediation_func(args, "ansible", rule_obj), |
95
|
|
|
"anaconda": remediation_func(args, "anaconda", rule_obj), |
96
|
|
|
"bash": remediation_func(args, "bash", rule_obj), |
97
|
|
|
"puppet": remediation_func(args, "puppet", rule_obj) |
98
|
|
|
}, |
99
|
|
|
... |
100
|
|
|
} |
101
|
|
|
|
102
|
|
|
The arguments supplied to oval_func are args and rule_obj. |
103
|
|
|
The arguments supplied to remediation_func are args, the remediation type, |
104
|
|
|
and rule_obj. |
105
|
|
|
""" |
106
|
|
|
|
107
|
|
|
affected_rules = 0 |
108
|
|
|
verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
109
|
|
|
|
110
|
|
|
for rule_id in known_rules: |
111
|
|
|
rule_obj = known_rules[rule_id] |
112
|
|
|
if _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output): |
113
|
|
|
affected_rules += 1 |
114
|
|
|
|
115
|
|
|
return affected_rules, verbose_output |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def walk_rule_stats(rule_output): |
119
|
|
|
""" |
120
|
|
|
Walk the output of a rule, generating statistics about affected |
121
|
|
|
ovals, remediations, and generating verbose output in a stable order. |
122
|
|
|
|
123
|
|
|
Returns a tuple of (affected_ovals, affected_remediations, |
124
|
|
|
all_affected_remediations, affected_remediations_type, all_output) |
125
|
|
|
""" |
126
|
|
|
|
127
|
|
|
affected_ovals = 0 |
128
|
|
|
affected_remediations = 0 |
129
|
|
|
all_affected_remediations = 0 |
130
|
|
|
affected_remediations_type = defaultdict(lambda: 0) |
131
|
|
|
all_output = [] |
132
|
|
|
|
133
|
|
|
affected_remediation = False |
134
|
|
|
all_remedation = True |
135
|
|
|
|
136
|
|
|
if 'oval' in rule_output: |
137
|
|
|
affected_ovals += 1 |
138
|
|
|
all_output.append(rule_output['oval']) |
139
|
|
|
|
140
|
|
|
for r_type in sorted(REMEDIATION_MAP): |
141
|
|
|
if r_type in rule_output: |
142
|
|
|
affected_remediation = True |
143
|
|
|
affected_remediations_type[r_type] += 1 |
144
|
|
|
all_output.append(rule_output[r_type]) |
145
|
|
|
else: |
146
|
|
|
all_remedation = False |
147
|
|
|
|
148
|
|
|
if affected_remediation: |
149
|
|
|
affected_remediations += 1 |
150
|
|
|
if all_remedation: |
151
|
|
|
all_affected_remediations += 1 |
152
|
|
|
|
153
|
|
|
return (affected_ovals, affected_remediations, all_affected_remediations, |
154
|
|
|
affected_remediations_type, all_output) |
155
|
|
|
|
156
|
|
|
|
157
|
|
|
def walk_rules_stats(args, known_rules, oval_func, remediation_func): |
158
|
|
|
""" |
159
|
|
|
Walk a dictionary of known_rules and generate simple aggregate statistics |
160
|
|
|
for all visited rules. The oval_func and remediation_func arguments behave |
161
|
|
|
according to walk_rules(). |
162
|
|
|
|
163
|
|
|
Returned values are visited_rules, affected_ovals, affected_remediation, |
164
|
|
|
a dictionary containing all fix types and the quantity of affected fixes, |
165
|
|
|
and the ordered output of all functions. |
166
|
|
|
|
167
|
|
|
An effort is made to provide consistently ordered verbose_output by |
168
|
|
|
sorting all visited keys and the keys of |
169
|
|
|
ssg.build_remediations.REMEDIATION_MAP. |
170
|
|
|
""" |
171
|
|
|
affected_rules, verbose_output = walk_rules(args, known_rules, oval_func, remediation_func) |
172
|
|
|
|
173
|
|
|
affected_ovals = 0 |
174
|
|
|
affected_remediations = 0 |
175
|
|
|
all_affected_remediations = 0 |
176
|
|
|
affected_remediations_type = defaultdict(lambda: 0) |
177
|
|
|
all_output = [] |
178
|
|
|
|
179
|
|
|
for rule_id in sorted(verbose_output): |
180
|
|
|
rule_output = verbose_output[rule_id] |
181
|
|
|
results = walk_rule_stats(rule_output) |
182
|
|
|
|
183
|
|
|
affected_ovals += results[0] |
184
|
|
|
affected_remediations += results[1] |
185
|
|
|
all_affected_remediations += results[2] |
186
|
|
|
for key in results[3]: |
187
|
|
|
affected_remediations_type[key] += results[3][key] |
188
|
|
|
|
189
|
|
|
all_output.extend(results[4]) |
190
|
|
|
|
191
|
|
|
return (affected_rules, affected_ovals, affected_remediations, |
192
|
|
|
all_affected_remediations, affected_remediations_type, all_output) |
193
|
|
|
|
194
|
|
|
|
195
|
|
|
def walk_rules_parallel(args, left_rules, right_rules, oval_func, remediation_func): |
|
|
|
|
196
|
|
|
""" |
197
|
|
|
Walks two sets of known_rules (left_rules and right_rules) with identical |
198
|
|
|
keys and returns left_only, right_only, and common_only output from |
199
|
|
|
_walk_rule. If the outputted data for a rule when called on left_rules and |
200
|
|
|
right_rules is the same, it is added to common_only. Only rules which |
201
|
|
|
output different data will have their data added to left_only and |
202
|
|
|
right_only respectively. |
203
|
|
|
|
204
|
|
|
Can assert. |
205
|
|
|
""" |
206
|
|
|
|
207
|
|
|
left_affected_rules = 0 |
208
|
|
|
right_affected_rules = 0 |
209
|
|
|
common_affected_rules = 0 |
210
|
|
|
|
211
|
|
|
left_verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
212
|
|
|
right_verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
213
|
|
|
common_verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
214
|
|
|
|
215
|
|
|
assert set(left_rules) == set(right_rules) |
216
|
|
|
|
217
|
|
|
for rule_id in left_rules: |
218
|
|
|
left_rule_obj = left_rules[rule_id] |
219
|
|
|
right_rule_obj = right_rules[rule_id] |
220
|
|
|
|
221
|
|
|
if left_rule_obj == right_rule_obj: |
222
|
|
|
if _walk_rule(args, left_rule_obj, oval_func, remediation_func, common_verbose_output): |
223
|
|
|
common_affected_rules += 1 |
224
|
|
|
else: |
225
|
|
|
left_temp = defaultdict(lambda: defaultdict(lambda: None)) |
226
|
|
|
right_temp = defaultdict(lambda: defaultdict(lambda: None)) |
227
|
|
|
|
228
|
|
|
left_ret = _walk_rule(args, left_rule_obj, oval_func, remediation_func, left_temp) |
229
|
|
|
right_ret = _walk_rule(args, right_rule_obj, oval_func, remediation_func, right_temp) |
230
|
|
|
|
231
|
|
|
if left_ret == right_ret and left_temp == right_temp: |
232
|
|
|
common_verbose_output.update(left_temp) |
233
|
|
|
if left_ret: |
234
|
|
|
common_affected_rules += 1 |
235
|
|
|
else: |
236
|
|
|
left_verbose_output.update(left_temp) |
237
|
|
|
right_verbose_output.update(right_temp) |
238
|
|
|
if left_ret: |
239
|
|
|
left_affected_rules += 1 |
240
|
|
|
if right_ret: |
241
|
|
|
right_affected_rules += 1 |
242
|
|
|
|
243
|
|
|
left_only = (left_affected_rules, left_verbose_output) |
244
|
|
|
right_only = (right_affected_rules, right_verbose_output) |
245
|
|
|
common_only = (common_affected_rules, common_verbose_output) |
246
|
|
|
|
247
|
|
|
return left_only, right_only, common_only |
248
|
|
|
|
249
|
|
|
|
250
|
|
|
def walk_rules_diff(args, left_rules, right_rules, oval_func, remediation_func): |
|
|
|
|
251
|
|
|
""" |
252
|
|
|
Walk a two dictionary of known_rules (left_rules and right_rules) and generate |
253
|
|
|
five sets of output: left_only rules output, right_only rules output, |
254
|
|
|
shared left output, shared right output, and shared common output, as a |
255
|
|
|
five-tuple, where each tuple element is equivalent to walk_rules on the |
256
|
|
|
appropriate set of rules. |
257
|
|
|
|
258
|
|
|
Does not understand renaming of rule_ids as this would depend on disk |
259
|
|
|
content to reflect these differences. Unless significantly more data is |
260
|
|
|
added to the rule_obj structure (contents of rule.yml, ovals, |
261
|
|
|
remediations, etc.), all information besides 'title' is not uniquely |
262
|
|
|
identifying or could be easily updated. |
263
|
|
|
""" |
264
|
|
|
|
265
|
|
|
left_rule_ids = set(left_rules) |
266
|
|
|
right_rule_ids = set(right_rules) |
267
|
|
|
|
268
|
|
|
left_only_rule_ids = left_rule_ids.difference(right_rule_ids) |
269
|
|
|
right_only_rule_ids = right_rule_ids.difference(left_rule_ids) |
270
|
|
|
common_rule_ids = left_rule_ids.intersection(right_rule_ids) |
271
|
|
|
|
272
|
|
|
left_restricted = subset_dict(left_rules, left_only_rule_ids) |
273
|
|
|
left_common = subset_dict(left_rules, common_rule_ids) |
274
|
|
|
right_restricted = subset_dict(right_rules, right_only_rule_ids) |
275
|
|
|
right_common = subset_dict(right_rules, common_rule_ids) |
276
|
|
|
|
277
|
|
|
left_only_data = walk_rules(args, left_restricted, oval_func, remediation_func) |
278
|
|
|
right_only_data = walk_rules(args, right_restricted, oval_func, remediation_func) |
279
|
|
|
l_c_d, r_c_d, c_d = walk_rules_parallel(args, left_common, right_common, |
280
|
|
|
oval_func, remediation_func) |
281
|
|
|
|
282
|
|
|
left_changed_data = l_c_d |
283
|
|
|
right_changed_data = r_c_d |
284
|
|
|
common_data = c_d |
285
|
|
|
|
286
|
|
|
return (left_only_data, right_only_data, left_changed_data, right_changed_data, common_data) |
287
|
|
|
|
288
|
|
|
|
289
|
|
|
def walk_rules_diff_stats(results): |
290
|
|
|
""" |
291
|
|
|
Takes the results of walk_rules_diff (results) and generates five sets of |
292
|
|
|
output statistics: left_only rules output, right_only rules output, |
293
|
|
|
shared left output, shared right output, and shared common output, as a |
294
|
|
|
five-tuple, where each tuple element is equivalent to walk_rules_stats on |
295
|
|
|
the appropriate set of rules. |
296
|
|
|
|
297
|
|
|
Can assert. |
298
|
|
|
""" |
299
|
|
|
|
300
|
|
|
assert len(results) == 5 |
301
|
|
|
|
302
|
|
|
output_data = [] |
303
|
|
|
|
304
|
|
|
for data in results: |
305
|
|
|
affected_rules, verbose_output = data |
306
|
|
|
|
307
|
|
|
affected_ovals = 0 |
308
|
|
|
affected_remediations = 0 |
309
|
|
|
all_affected_remediations = 0 |
310
|
|
|
affected_remediations_type = defaultdict(lambda: 0) |
311
|
|
|
all_output = [] |
312
|
|
|
|
313
|
|
|
for rule_id in sorted(verbose_output): |
314
|
|
|
rule_output = verbose_output[rule_id] |
315
|
|
|
_results = walk_rule_stats(rule_output) |
316
|
|
|
|
317
|
|
|
affected_ovals += _results[0] |
318
|
|
|
affected_remediations += _results[1] |
319
|
|
|
all_affected_remediations += _results[2] |
320
|
|
|
for key in _results[3]: |
321
|
|
|
affected_remediations_type[key] += _results[3][key] |
322
|
|
|
|
323
|
|
|
all_output.extend(_results[4]) |
324
|
|
|
|
325
|
|
|
output_data.append((affected_rules, affected_ovals, |
326
|
|
|
affected_remediations, all_affected_remediations, |
327
|
|
|
affected_remediations_type, all_output)) |
328
|
|
|
|
329
|
|
|
assert len(output_data) == 5 |
330
|
|
|
|
331
|
|
|
return tuple(output_data) |
332
|
|
|
|
333
|
|
|
|
334
|
|
|
def filter_rule_ids(all_keys, queries): |
335
|
|
|
""" |
336
|
|
|
From a set of queries (a comma separated list of queries, where a query is either a |
337
|
|
|
rule id or a substring thereof), return the set of matching keys from all_keys. When |
338
|
|
|
queries is the literal string "all", return all of the keys. |
339
|
|
|
""" |
340
|
|
|
|
341
|
|
|
if not queries: |
342
|
|
|
return set() |
343
|
|
|
|
344
|
|
|
if queries == 'all': |
345
|
|
|
return set(all_keys) |
346
|
|
|
|
347
|
|
|
# We assume that all_keys is much longer than queries; this allows us to do |
348
|
|
|
# len(all_keys) iterations of size len(query_parts) instead of len(query_parts) |
349
|
|
|
# queries of size len(all_keys) -- which hopefully should be a faster data access |
350
|
|
|
# pattern due to caches but in reality shouldn't matter. Note that we have to iterate |
351
|
|
|
# over the keys in all_keys either way, because we wish to check whether query is a |
352
|
|
|
# substring of a key, not whether query is a key. |
353
|
|
|
# |
354
|
|
|
# This does have the side-effect of not having the results be ordered according to |
355
|
|
|
# their order in query_parts, so we instead, we intentionally discard order by using |
356
|
|
|
# a set. This also guarantees that our results are unique. |
357
|
|
|
results = set() |
358
|
|
|
query_parts = queries.split(',') |
359
|
|
|
for key in all_keys: |
360
|
|
|
for query in query_parts: |
361
|
|
|
if query in key: |
362
|
|
|
results.add(key) |
363
|
|
|
|
364
|
|
|
return results |
365
|
|
|
|
366
|
|
|
|
367
|
|
|
def missing_oval(rule_obj): |
368
|
|
|
""" |
369
|
|
|
For a rule object, check if it is missing an oval. |
370
|
|
|
""" |
371
|
|
|
|
372
|
|
|
rule_id = rule_obj['id'] |
373
|
|
|
check = len(rule_obj['ovals']) > 0 |
374
|
|
|
if not check: |
375
|
|
|
return "\trule_id:%s is missing all OVALs" % rule_id |
376
|
|
|
|
377
|
|
|
|
378
|
|
|
def missing_remediation(rule_obj, r_type): |
379
|
|
|
""" |
380
|
|
|
For a rule object, check if it is missing a remediation of type r_type. |
381
|
|
|
""" |
382
|
|
|
|
383
|
|
|
rule_id = rule_obj['id'] |
384
|
|
|
check = len(rule_obj['remediations'][r_type]) > 0 |
385
|
|
|
if not check: |
386
|
|
|
return "\trule_id:%s is missing %s remediations" % (rule_id, r_type) |
387
|
|
|
|
388
|
|
|
|
389
|
|
|
def two_plus_oval(rule_obj): |
390
|
|
|
""" |
391
|
|
|
For a rule object, check if it has two or more OVALs. |
392
|
|
|
""" |
393
|
|
|
|
394
|
|
|
rule_id = rule_obj['id'] |
395
|
|
|
check = len(rule_obj['ovals']) >= 2 |
396
|
|
|
if check: |
397
|
|
|
return "\trule_id:%s has two or more OVALs: %s" % (rule_id, ','.join(rule_obj['ovals'])) |
398
|
|
|
|
399
|
|
|
|
400
|
|
|
def two_plus_remediation(rule_obj, r_type): |
401
|
|
|
""" |
402
|
|
|
For a rule object, check if it has two or more remediations of type r_type. |
403
|
|
|
""" |
404
|
|
|
|
405
|
|
|
rule_id = rule_obj['id'] |
406
|
|
|
check = len(rule_obj['remediations'][r_type]) >= 2 |
407
|
|
|
if check: |
408
|
|
|
return "\trule_id:%s has two or more %s remediations: %s" % \ |
409
|
|
|
(rule_id, r_type, ','.join(rule_obj['remediations'][r_type])) |
410
|
|
|
|
411
|
|
|
|
412
|
|
|
def prodtypes_oval(rule_obj): |
413
|
|
|
""" |
414
|
|
|
For a rule object, check if the prodtypes match between the YAML and the |
415
|
|
|
OVALs. |
416
|
|
|
""" |
417
|
|
|
|
418
|
|
|
rule_id = rule_obj['id'] |
419
|
|
|
|
420
|
|
|
rule_products = set(rule_obj['products']) |
421
|
|
|
if not rule_products: |
422
|
|
|
return |
423
|
|
|
|
424
|
|
|
oval_products = set() |
425
|
|
|
for oval in rule_obj['ovals']: |
426
|
|
|
oval_products.update(rule_obj['ovals'][oval]['products']) |
427
|
|
|
if not oval_products: |
428
|
|
|
return |
429
|
|
|
|
430
|
|
|
sym_diff = sorted(rule_products.symmetric_difference(oval_products)) |
431
|
|
|
check = len(sym_diff) > 0 |
432
|
|
|
if check: |
433
|
|
|
return "\trule_id:%s has a different prodtypes between YAML and OVALs: %s" % \ |
434
|
|
|
(rule_id, ','.join(sym_diff)) |
435
|
|
|
|
436
|
|
|
|
437
|
|
|
def prodtypes_remediation(rule_obj, r_type): |
438
|
|
|
""" |
439
|
|
|
For a rule object, check if the prodtypes match between the YAML and the |
440
|
|
|
remediations of type r_type. |
441
|
|
|
""" |
442
|
|
|
|
443
|
|
|
rule_id = rule_obj['id'] |
444
|
|
|
|
445
|
|
|
rule_products = set(rule_obj['products']) |
446
|
|
|
if not rule_products: |
447
|
|
|
return |
448
|
|
|
|
449
|
|
|
remediation_products = set() |
450
|
|
|
for remediation in rule_obj['remediations'][r_type]: |
451
|
|
|
remediation_products.update(rule_obj['remediations'][r_type][remediation]['products']) |
452
|
|
|
if not remediation_products: |
453
|
|
|
return |
454
|
|
|
|
455
|
|
|
sym_diff = sorted(rule_products.symmetric_difference(remediation_products)) |
456
|
|
|
check = len(sym_diff) > 0 and rule_products and remediation_products |
457
|
|
|
if check: |
458
|
|
|
return "\trule_id:%s has a different prodtypes between YAML and %s remediations: %s" % \ |
459
|
|
|
(rule_id, r_type, ','.join(sym_diff)) |
460
|
|
|
|
461
|
|
|
|
462
|
|
|
def product_names_oval(rule_obj): |
463
|
|
|
""" |
464
|
|
|
For a rule_obj, check the scope of the platforms versus the product name |
465
|
|
|
of the OVAL objects. |
466
|
|
|
""" |
467
|
|
|
|
468
|
|
|
rule_id = rule_obj['id'] |
469
|
|
|
for oval_name in rule_obj['ovals']: |
470
|
|
|
if oval_name == "shared.xml": |
471
|
|
|
continue |
472
|
|
|
|
473
|
|
|
oval_product, _ = os.path.splitext(oval_name) |
474
|
|
|
for product in rule_obj['ovals'][oval_name]['products']: |
475
|
|
|
if product != oval_product: |
476
|
|
|
return "\trule_id:%s has a different product and OVALs names: %s is not %s" % \ |
477
|
|
|
(rule_id, product, oval_product) |
478
|
|
|
|
479
|
|
|
|
480
|
|
|
def product_names_remediation(rule_obj, r_type): |
481
|
|
|
""" |
482
|
|
|
For a rule_obj, check the scope of the platforms versus the product name |
483
|
|
|
of the remediations of type r_type. |
484
|
|
|
""" |
485
|
|
|
|
486
|
|
|
rule_id = rule_obj['id'] |
487
|
|
|
for r_name in rule_obj['remediations'][r_type]: |
488
|
|
|
r_product, _ = os.path.splitext(r_name) |
489
|
|
|
if r_product == "shared": |
490
|
|
|
continue |
491
|
|
|
|
492
|
|
|
for product in rule_obj['remediations'][r_type][r_name]['products']: |
493
|
|
|
if product != r_product: |
494
|
|
|
return "\trule_id:%s has a different product and %s remediation names: %s is not %s" % \ |
|
|
|
|
495
|
|
|
(rule_id, r_type, product, r_product) |
496
|
|
|
|