|
1
|
|
|
""" |
|
2
|
|
|
This module contains common code shared by utils/rule_dir_stats.py and |
|
3
|
|
|
utils/rule_dir_diff.py. This code includes functions for walking the output |
|
4
|
|
|
of the utils/rule_dir_json.py script, and filtering functions used in both |
|
5
|
|
|
scripts. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
from __future__ import absolute_import |
|
9
|
|
|
from __future__ import print_function |
|
10
|
|
|
|
|
11
|
|
|
import os |
|
12
|
|
|
from collections import defaultdict |
|
13
|
|
|
|
|
14
|
|
|
from .build_remediations import REMEDIATION_TO_EXT_MAP as REMEDIATION_MAP |
|
15
|
|
|
from .utils import subset_dict |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
|
|
def get_affected_products(rule_obj): |
|
19
|
|
|
""" |
|
20
|
|
|
From a rule_obj, return the set of affected products from rule.yml |
|
21
|
|
|
""" |
|
22
|
|
|
return set(rule_obj['products']) |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
def get_all_affected_products(args, rule_obj): |
|
26
|
|
|
""" |
|
27
|
|
|
From a rule_obj, return the set of affected products from rule.yml, and |
|
28
|
|
|
all fixes and checks. |
|
29
|
|
|
|
|
30
|
|
|
If args.strict is set, this function is equivalent to |
|
31
|
|
|
get_affected_products. Otherwise, it includes ovals and fix content based |
|
32
|
|
|
on the values of args.fixes_only and args.ovals_only. |
|
33
|
|
|
""" |
|
34
|
|
|
|
|
35
|
|
|
affected_products = get_affected_products(rule_obj) |
|
36
|
|
|
|
|
37
|
|
|
if args.strict: |
|
38
|
|
|
return affected_products |
|
39
|
|
|
|
|
40
|
|
|
if not args.fixes_only: |
|
41
|
|
|
for product in rule_obj['oval_products']: |
|
42
|
|
|
affected_products.add(product) |
|
43
|
|
|
|
|
44
|
|
|
if not args.ovals_only: |
|
45
|
|
|
for product in rule_obj['remediation_products']: |
|
46
|
|
|
affected_products.add(product) |
|
47
|
|
|
|
|
48
|
|
|
return affected_products |
|
49
|
|
|
|
|
50
|
|
|
|
|
51
|
|
|
def _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output): |
|
52
|
|
|
""" |
|
53
|
|
|
Walks a single rule and updates verbose_output if visited. Returns visited |
|
54
|
|
|
state as a boolean. |
|
55
|
|
|
|
|
56
|
|
|
Internal function for walk_rules and walk_rules_parallel. |
|
57
|
|
|
""" |
|
58
|
|
|
|
|
59
|
|
|
rule_id = rule_obj['id'] |
|
60
|
|
|
|
|
61
|
|
|
affected_products = get_all_affected_products(args, rule_obj) |
|
62
|
|
|
if not affected_products.intersection(args.products): |
|
63
|
|
|
return False |
|
64
|
|
|
if args.query and rule_id not in args.query: |
|
65
|
|
|
return False |
|
66
|
|
|
|
|
67
|
|
|
if not args.fixes_only: |
|
68
|
|
|
result = oval_func(rule_obj) |
|
69
|
|
|
if result: |
|
70
|
|
|
verbose_output[rule_id]['oval'] = result |
|
71
|
|
|
|
|
72
|
|
|
if not args.ovals_only: |
|
73
|
|
|
for r_type in REMEDIATION_MAP: |
|
74
|
|
|
result = remediation_func(rule_obj, r_type) |
|
75
|
|
|
if result: |
|
76
|
|
|
verbose_output[rule_id][r_type] = result |
|
77
|
|
|
|
|
78
|
|
|
return True |
|
79
|
|
|
|
|
80
|
|
|
|
|
81
|
|
|
def walk_rules(args, known_rules, oval_func, remediation_func): |
|
82
|
|
|
""" |
|
83
|
|
|
Walk a dictionary of known_rules, returning the number of visited rules |
|
84
|
|
|
and the output at each visited rule, conditionally calling oval_func and |
|
85
|
|
|
remediation_func based on the values of args.fixes_only and |
|
86
|
|
|
args.ovals_only. If the result of these functions are not Falsy, set the |
|
87
|
|
|
appropriate output content. |
|
88
|
|
|
|
|
89
|
|
|
The input rule_obj structure is the value of known_rules[rule_id]. |
|
90
|
|
|
|
|
91
|
|
|
The output structure is a dict as follows:: |
|
92
|
|
|
|
|
93
|
|
|
{ |
|
94
|
|
|
rule_id: { |
|
95
|
|
|
"oval": oval_func(args, rule_obj), |
|
96
|
|
|
"ansible": remediation_func(args, "ansible", rule_obj), |
|
97
|
|
|
"anaconda": remediation_func(args, "anaconda", rule_obj), |
|
98
|
|
|
"bash": remediation_func(args, "bash", rule_obj), |
|
99
|
|
|
"puppet": remediation_func(args, "puppet", rule_obj) |
|
100
|
|
|
}, |
|
101
|
|
|
... |
|
102
|
|
|
} |
|
103
|
|
|
|
|
104
|
|
|
|
|
105
|
|
|
The arguments supplied to oval_func are args and rule_obj. |
|
106
|
|
|
The arguments supplied to remediation_func are args, the remediation type, |
|
107
|
|
|
and rule_obj. |
|
108
|
|
|
""" |
|
109
|
|
|
|
|
110
|
|
|
affected_rules = 0 |
|
111
|
|
|
verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
|
112
|
|
|
|
|
113
|
|
|
for rule_id in known_rules: |
|
114
|
|
|
rule_obj = known_rules[rule_id] |
|
115
|
|
|
if _walk_rule(args, rule_obj, oval_func, remediation_func, verbose_output): |
|
116
|
|
|
affected_rules += 1 |
|
117
|
|
|
|
|
118
|
|
|
return affected_rules, verbose_output |
|
119
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
def walk_rule_stats(rule_output): |
|
122
|
|
|
""" |
|
123
|
|
|
Walk the output of a rule, generating statistics about affected |
|
124
|
|
|
ovals, remediations, and generating verbose output in a stable order. |
|
125
|
|
|
|
|
126
|
|
|
Returns a tuple of (affected_ovals, affected_remediations, |
|
127
|
|
|
all_affected_remediations, affected_remediations_type, all_output) |
|
128
|
|
|
""" |
|
129
|
|
|
|
|
130
|
|
|
affected_ovals = 0 |
|
131
|
|
|
affected_remediations = 0 |
|
132
|
|
|
all_affected_remediations = 0 |
|
133
|
|
|
affected_remediations_type = defaultdict(lambda: 0) |
|
134
|
|
|
all_output = [] |
|
135
|
|
|
|
|
136
|
|
|
affected_remediation = False |
|
137
|
|
|
all_remedation = True |
|
138
|
|
|
|
|
139
|
|
|
if 'oval' in rule_output: |
|
140
|
|
|
affected_ovals += 1 |
|
141
|
|
|
all_output.append(rule_output['oval']) |
|
142
|
|
|
|
|
143
|
|
|
for r_type in sorted(REMEDIATION_MAP): |
|
144
|
|
|
if r_type in rule_output: |
|
145
|
|
|
affected_remediation = True |
|
146
|
|
|
affected_remediations_type[r_type] += 1 |
|
147
|
|
|
all_output.append(rule_output[r_type]) |
|
148
|
|
|
else: |
|
149
|
|
|
all_remedation = False |
|
150
|
|
|
|
|
151
|
|
|
if affected_remediation: |
|
152
|
|
|
affected_remediations += 1 |
|
153
|
|
|
if all_remedation: |
|
154
|
|
|
all_affected_remediations += 1 |
|
155
|
|
|
|
|
156
|
|
|
return (affected_ovals, affected_remediations, all_affected_remediations, |
|
157
|
|
|
affected_remediations_type, all_output) |
|
158
|
|
|
|
|
159
|
|
|
|
|
160
|
|
|
def walk_rules_stats(args, known_rules, oval_func, remediation_func): |
|
161
|
|
|
""" |
|
162
|
|
|
Walk a dictionary of known_rules and generate simple aggregate statistics |
|
163
|
|
|
for all visited rules. The oval_func and remediation_func arguments behave |
|
164
|
|
|
according to walk_rules(). |
|
165
|
|
|
|
|
166
|
|
|
Returned values are visited_rules, affected_ovals, affected_remediation, |
|
167
|
|
|
a dictionary containing all fix types and the quantity of affected fixes, |
|
168
|
|
|
and the ordered output of all functions. |
|
169
|
|
|
|
|
170
|
|
|
An effort is made to provide consistently ordered verbose_output by |
|
171
|
|
|
sorting all visited keys and the keys of |
|
172
|
|
|
ssg.build_remediations.REMEDIATION_MAP. |
|
173
|
|
|
""" |
|
174
|
|
|
affected_rules, verbose_output = walk_rules(args, known_rules, oval_func, remediation_func) |
|
175
|
|
|
|
|
176
|
|
|
affected_ovals = 0 |
|
177
|
|
|
affected_remediations = 0 |
|
178
|
|
|
all_affected_remediations = 0 |
|
179
|
|
|
affected_remediations_type = defaultdict(lambda: 0) |
|
180
|
|
|
all_output = [] |
|
181
|
|
|
|
|
182
|
|
|
for rule_id in sorted(verbose_output): |
|
183
|
|
|
rule_output = verbose_output[rule_id] |
|
184
|
|
|
results = walk_rule_stats(rule_output) |
|
185
|
|
|
|
|
186
|
|
|
affected_ovals += results[0] |
|
187
|
|
|
affected_remediations += results[1] |
|
188
|
|
|
all_affected_remediations += results[2] |
|
189
|
|
|
for key in results[3]: |
|
190
|
|
|
affected_remediations_type[key] += results[3][key] |
|
191
|
|
|
|
|
192
|
|
|
all_output.extend(results[4]) |
|
193
|
|
|
|
|
194
|
|
|
return (affected_rules, affected_ovals, affected_remediations, |
|
195
|
|
|
all_affected_remediations, affected_remediations_type, all_output) |
|
196
|
|
|
|
|
197
|
|
|
|
|
198
|
|
|
def walk_rules_parallel(args, left_rules, right_rules, oval_func, remediation_func): |
|
199
|
|
|
""" |
|
200
|
|
|
Walks two sets of known_rules (left_rules and right_rules) with identical |
|
201
|
|
|
keys and returns left_only, right_only, and common_only output from |
|
202
|
|
|
_walk_rule. If the outputted data for a rule when called on left_rules and |
|
203
|
|
|
right_rules is the same, it is added to common_only. Only rules which |
|
204
|
|
|
output different data will have their data added to left_only and |
|
205
|
|
|
right_only respectively. |
|
206
|
|
|
|
|
207
|
|
|
Can assert. |
|
208
|
|
|
""" |
|
209
|
|
|
|
|
210
|
|
|
left_affected_rules = 0 |
|
211
|
|
|
right_affected_rules = 0 |
|
212
|
|
|
common_affected_rules = 0 |
|
213
|
|
|
|
|
214
|
|
|
left_verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
|
215
|
|
|
right_verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
|
216
|
|
|
common_verbose_output = defaultdict(lambda: defaultdict(lambda: None)) |
|
217
|
|
|
|
|
218
|
|
|
assert set(left_rules) == set(right_rules) |
|
219
|
|
|
|
|
220
|
|
|
for rule_id in left_rules: |
|
221
|
|
|
left_rule_obj = left_rules[rule_id] |
|
222
|
|
|
right_rule_obj = right_rules[rule_id] |
|
223
|
|
|
|
|
224
|
|
|
if left_rule_obj == right_rule_obj: |
|
225
|
|
|
if _walk_rule(args, left_rule_obj, oval_func, remediation_func, common_verbose_output): |
|
226
|
|
|
common_affected_rules += 1 |
|
227
|
|
|
else: |
|
228
|
|
|
left_temp = defaultdict(lambda: defaultdict(lambda: None)) |
|
229
|
|
|
right_temp = defaultdict(lambda: defaultdict(lambda: None)) |
|
230
|
|
|
|
|
231
|
|
|
left_ret = _walk_rule(args, left_rule_obj, oval_func, remediation_func, left_temp) |
|
232
|
|
|
right_ret = _walk_rule(args, right_rule_obj, oval_func, remediation_func, right_temp) |
|
233
|
|
|
|
|
234
|
|
|
if left_ret == right_ret and left_temp == right_temp: |
|
235
|
|
|
common_verbose_output.update(left_temp) |
|
236
|
|
|
if left_ret: |
|
237
|
|
|
common_affected_rules += 1 |
|
238
|
|
|
else: |
|
239
|
|
|
left_verbose_output.update(left_temp) |
|
240
|
|
|
right_verbose_output.update(right_temp) |
|
241
|
|
|
if left_ret: |
|
242
|
|
|
left_affected_rules += 1 |
|
243
|
|
|
if right_ret: |
|
244
|
|
|
right_affected_rules += 1 |
|
245
|
|
|
|
|
246
|
|
|
left_only = (left_affected_rules, left_verbose_output) |
|
247
|
|
|
right_only = (right_affected_rules, right_verbose_output) |
|
248
|
|
|
common_only = (common_affected_rules, common_verbose_output) |
|
249
|
|
|
|
|
250
|
|
|
return left_only, right_only, common_only |
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
def walk_rules_diff(args, left_rules, right_rules, oval_func, remediation_func): |
|
254
|
|
|
""" |
|
255
|
|
|
Walk a two dictionary of known_rules (left_rules and right_rules) and generate |
|
256
|
|
|
five sets of output: left_only rules output, right_only rules output, |
|
257
|
|
|
shared left output, shared right output, and shared common output, as a |
|
258
|
|
|
five-tuple, where each tuple element is equivalent to walk_rules on the |
|
259
|
|
|
appropriate set of rules. |
|
260
|
|
|
|
|
261
|
|
|
Does not understand renaming of rule_ids as this would depend on disk |
|
262
|
|
|
content to reflect these differences. Unless significantly more data is |
|
263
|
|
|
added to the rule_obj structure (contents of rule.yml, ovals, |
|
264
|
|
|
remediations, etc.), all information besides 'title' is not uniquely |
|
265
|
|
|
identifying or could be easily updated. |
|
266
|
|
|
""" |
|
267
|
|
|
|
|
268
|
|
|
left_rule_ids = set(left_rules) |
|
269
|
|
|
right_rule_ids = set(right_rules) |
|
270
|
|
|
|
|
271
|
|
|
left_only_rule_ids = left_rule_ids.difference(right_rule_ids) |
|
272
|
|
|
right_only_rule_ids = right_rule_ids.difference(left_rule_ids) |
|
273
|
|
|
common_rule_ids = left_rule_ids.intersection(right_rule_ids) |
|
274
|
|
|
|
|
275
|
|
|
left_restricted = subset_dict(left_rules, left_only_rule_ids) |
|
276
|
|
|
left_common = subset_dict(left_rules, common_rule_ids) |
|
277
|
|
|
right_restricted = subset_dict(right_rules, right_only_rule_ids) |
|
278
|
|
|
right_common = subset_dict(right_rules, common_rule_ids) |
|
279
|
|
|
|
|
280
|
|
|
left_only_data = walk_rules(args, left_restricted, oval_func, remediation_func) |
|
281
|
|
|
right_only_data = walk_rules(args, right_restricted, oval_func, remediation_func) |
|
282
|
|
|
l_c_d, r_c_d, c_d = walk_rules_parallel(args, left_common, right_common, |
|
283
|
|
|
oval_func, remediation_func) |
|
284
|
|
|
|
|
285
|
|
|
left_changed_data = l_c_d |
|
286
|
|
|
right_changed_data = r_c_d |
|
287
|
|
|
common_data = c_d |
|
288
|
|
|
|
|
289
|
|
|
return (left_only_data, right_only_data, left_changed_data, right_changed_data, common_data) |
|
290
|
|
|
|
|
291
|
|
|
|
|
292
|
|
|
def walk_rules_diff_stats(results): |
|
293
|
|
|
""" |
|
294
|
|
|
Takes the results of walk_rules_diff (results) and generates five sets of |
|
295
|
|
|
output statistics: left_only rules output, right_only rules output, |
|
296
|
|
|
shared left output, shared right output, and shared common output, as a |
|
297
|
|
|
five-tuple, where each tuple element is equivalent to walk_rules_stats on |
|
298
|
|
|
the appropriate set of rules. |
|
299
|
|
|
|
|
300
|
|
|
Can assert. |
|
301
|
|
|
""" |
|
302
|
|
|
|
|
303
|
|
|
assert len(results) == 5 |
|
304
|
|
|
|
|
305
|
|
|
output_data = [] |
|
306
|
|
|
|
|
307
|
|
|
for data in results: |
|
308
|
|
|
affected_rules, verbose_output = data |
|
309
|
|
|
|
|
310
|
|
|
affected_ovals = 0 |
|
311
|
|
|
affected_remediations = 0 |
|
312
|
|
|
all_affected_remediations = 0 |
|
313
|
|
|
affected_remediations_type = defaultdict(lambda: 0) |
|
314
|
|
|
all_output = [] |
|
315
|
|
|
|
|
316
|
|
|
for rule_id in sorted(verbose_output): |
|
317
|
|
|
rule_output = verbose_output[rule_id] |
|
318
|
|
|
_results = walk_rule_stats(rule_output) |
|
319
|
|
|
|
|
320
|
|
|
affected_ovals += _results[0] |
|
321
|
|
|
affected_remediations += _results[1] |
|
322
|
|
|
all_affected_remediations += _results[2] |
|
323
|
|
|
for key in _results[3]: |
|
324
|
|
|
affected_remediations_type[key] += _results[3][key] |
|
325
|
|
|
|
|
326
|
|
|
all_output.extend(_results[4]) |
|
327
|
|
|
|
|
328
|
|
|
output_data.append((affected_rules, affected_ovals, |
|
329
|
|
|
affected_remediations, all_affected_remediations, |
|
330
|
|
|
affected_remediations_type, all_output)) |
|
331
|
|
|
|
|
332
|
|
|
assert len(output_data) == 5 |
|
333
|
|
|
|
|
334
|
|
|
return tuple(output_data) |
|
335
|
|
|
|
|
336
|
|
|
|
|
337
|
|
|
def filter_rule_ids(all_keys, queries): |
|
338
|
|
|
""" |
|
339
|
|
|
From a set of queries (a comma separated list of queries, where a query is either a |
|
340
|
|
|
rule id or a substring thereof), return the set of matching keys from all_keys. When |
|
341
|
|
|
queries is the literal string "all", return all of the keys. |
|
342
|
|
|
""" |
|
343
|
|
|
|
|
344
|
|
|
if not queries: |
|
345
|
|
|
return set() |
|
346
|
|
|
|
|
347
|
|
|
if queries == 'all': |
|
348
|
|
|
return set(all_keys) |
|
349
|
|
|
|
|
350
|
|
|
# We assume that all_keys is much longer than queries; this allows us to do |
|
351
|
|
|
# len(all_keys) iterations of size len(query_parts) instead of len(query_parts) |
|
352
|
|
|
# queries of size len(all_keys) -- which hopefully should be a faster data access |
|
353
|
|
|
# pattern due to caches but in reality shouldn't matter. Note that we have to iterate |
|
354
|
|
|
# over the keys in all_keys either way, because we wish to check whether query is a |
|
355
|
|
|
# substring of a key, not whether query is a key. |
|
356
|
|
|
# |
|
357
|
|
|
# This does have the side-effect of not having the results be ordered according to |
|
358
|
|
|
# their order in query_parts, so we instead, we intentionally discard order by using |
|
359
|
|
|
# a set. This also guarantees that our results are unique. |
|
360
|
|
|
results = set() |
|
361
|
|
|
query_parts = queries.split(',') |
|
362
|
|
|
for key in all_keys: |
|
363
|
|
|
for query in query_parts: |
|
364
|
|
|
if query in key: |
|
365
|
|
|
results.add(key) |
|
366
|
|
|
|
|
367
|
|
|
return results |
|
368
|
|
|
|
|
369
|
|
|
|
|
370
|
|
|
def missing_oval(rule_obj): |
|
371
|
|
|
""" |
|
372
|
|
|
For a rule object, check if it is missing an oval. |
|
373
|
|
|
""" |
|
374
|
|
|
|
|
375
|
|
|
rule_id = rule_obj['id'] |
|
376
|
|
|
check = len(rule_obj['ovals']) > 0 |
|
377
|
|
|
if not check: |
|
378
|
|
|
return "\trule_id:%s is missing all OVALs" % rule_id |
|
379
|
|
|
|
|
380
|
|
|
|
|
381
|
|
|
def missing_remediation(rule_obj, r_type): |
|
382
|
|
|
""" |
|
383
|
|
|
For a rule object, check if it is missing a remediation of type r_type. |
|
384
|
|
|
""" |
|
385
|
|
|
|
|
386
|
|
|
rule_id = rule_obj['id'] |
|
387
|
|
|
check = (r_type in rule_obj['remediations'] and |
|
388
|
|
|
len(rule_obj['remediations'][r_type]) > 0) |
|
389
|
|
|
if not check: |
|
390
|
|
|
return "\trule_id:%s is missing %s remediations" % (rule_id, r_type) |
|
391
|
|
|
|
|
392
|
|
|
|
|
393
|
|
|
def two_plus_oval(rule_obj): |
|
394
|
|
|
""" |
|
395
|
|
|
For a rule object, check if it has two or more OVALs. |
|
396
|
|
|
""" |
|
397
|
|
|
|
|
398
|
|
|
rule_id = rule_obj['id'] |
|
399
|
|
|
check = len(rule_obj['ovals']) >= 2 |
|
400
|
|
|
if check: |
|
401
|
|
|
return "\trule_id:%s has two or more OVALs: %s" % (rule_id, ','.join(rule_obj['ovals'])) |
|
402
|
|
|
|
|
403
|
|
|
|
|
404
|
|
|
def two_plus_remediation(rule_obj, r_type): |
|
405
|
|
|
""" |
|
406
|
|
|
For a rule object, check if it has two or more remediations of type r_type. |
|
407
|
|
|
""" |
|
408
|
|
|
|
|
409
|
|
|
rule_id = rule_obj['id'] |
|
410
|
|
|
check = (r_type in rule_obj['remediations'] and |
|
411
|
|
|
len(rule_obj['remediations'][r_type]) >= 2) |
|
412
|
|
|
if check: |
|
413
|
|
|
return "\trule_id:%s has two or more %s remediations: %s" % \ |
|
414
|
|
|
(rule_id, r_type, ','.join(rule_obj['remediations'][r_type])) |
|
415
|
|
|
|
|
416
|
|
|
|
|
417
|
|
|
def prodtypes_oval(rule_obj): |
|
418
|
|
|
""" |
|
419
|
|
|
For a rule object, check if the prodtypes match between the YAML and the |
|
420
|
|
|
OVALs. |
|
421
|
|
|
""" |
|
422
|
|
|
|
|
423
|
|
|
rule_id = rule_obj['id'] |
|
424
|
|
|
|
|
425
|
|
|
rule_products = set(rule_obj.get('products', [])) |
|
426
|
|
|
if not rule_products: |
|
427
|
|
|
return |
|
428
|
|
|
|
|
429
|
|
|
oval_products = set() |
|
430
|
|
|
for oval in rule_obj.get('ovals', []): |
|
431
|
|
|
oval_products.update(rule_obj['ovals'][oval].get('products', [])) |
|
432
|
|
|
if not oval_products: |
|
433
|
|
|
return |
|
434
|
|
|
|
|
435
|
|
|
sym_diff = sorted(rule_products.symmetric_difference(oval_products)) |
|
436
|
|
|
check = len(sym_diff) > 0 |
|
437
|
|
|
if check: |
|
438
|
|
|
return "\trule_id:%s has a different prodtypes between YAML and OVALs: %s" % \ |
|
439
|
|
|
(rule_id, ','.join(sym_diff)) |
|
440
|
|
|
|
|
441
|
|
|
|
|
442
|
|
|
def prodtypes_remediation(rule_obj, r_type): |
|
443
|
|
|
""" |
|
444
|
|
|
For a rule object, check if the prodtypes match between the YAML and the |
|
445
|
|
|
remediations of type r_type. |
|
446
|
|
|
""" |
|
447
|
|
|
|
|
448
|
|
|
rule_id = rule_obj['id'] |
|
449
|
|
|
|
|
450
|
|
|
rule_products = set(rule_obj.get('products', [])) |
|
451
|
|
|
if not rule_products: |
|
452
|
|
|
return |
|
453
|
|
|
|
|
454
|
|
|
remediation_products = set() |
|
455
|
|
|
for remediation in rule_obj.get('remediations', dict()).get(r_type, dict()): |
|
456
|
|
|
remediation_products.update(rule_obj['remediations'][r_type][remediation]['products']) |
|
457
|
|
|
if not remediation_products: |
|
458
|
|
|
return |
|
459
|
|
|
|
|
460
|
|
|
sym_diff = sorted(rule_products.symmetric_difference(remediation_products)) |
|
461
|
|
|
check = len(sym_diff) > 0 and rule_products and remediation_products |
|
462
|
|
|
if check: |
|
463
|
|
|
return "\trule_id:%s has a different prodtypes between YAML and %s remediations: %s" % \ |
|
464
|
|
|
(rule_id, r_type, ','.join(sym_diff)) |
|
465
|
|
|
|
|
466
|
|
|
|
|
467
|
|
|
def product_names_oval(rule_obj): |
|
468
|
|
|
""" |
|
469
|
|
|
For a rule_obj, check the scope of the platforms versus the product name |
|
470
|
|
|
of the OVAL objects. |
|
471
|
|
|
""" |
|
472
|
|
|
|
|
473
|
|
|
rule_id = rule_obj['id'] |
|
474
|
|
|
for oval_name in rule_obj['ovals']: |
|
475
|
|
|
if oval_name == "shared.xml": |
|
476
|
|
|
continue |
|
477
|
|
|
|
|
478
|
|
|
oval_product, _ = os.path.splitext(oval_name) |
|
479
|
|
|
for product in rule_obj['ovals'][oval_name]['products']: |
|
480
|
|
|
if product != oval_product: |
|
481
|
|
|
return "\trule_id:%s has a different product and OVALs names: %s is not %s" % \ |
|
482
|
|
|
(rule_id, product, oval_product) |
|
483
|
|
|
|
|
484
|
|
|
|
|
485
|
|
|
def product_names_remediation(rule_obj, r_type): |
|
486
|
|
|
""" |
|
487
|
|
|
For a rule_obj, check the scope of the platforms versus the product name |
|
488
|
|
|
of the remediations of type r_type. |
|
489
|
|
|
""" |
|
490
|
|
|
|
|
491
|
|
|
rule_id = rule_obj['id'] |
|
492
|
|
|
for r_name in rule_obj['remediations'][r_type]: |
|
493
|
|
|
r_product, _ = os.path.splitext(r_name) |
|
494
|
|
|
if r_product == "shared": |
|
495
|
|
|
continue |
|
496
|
|
|
|
|
497
|
|
|
for product in rule_obj['remediations'][r_type][r_name]['products']: |
|
498
|
|
|
if product != r_product: |
|
499
|
|
|
return "\trule_id:%s has a different product and %s remediation names: %s is not %s" % \ |
|
500
|
|
|
(rule_id, r_type, product, r_product) |
|
501
|
|
|
|