| Total Complexity | 20 |
| Total Lines | 138 |
| Duplicated Lines | 79.71 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | import pandas as pd |
||
| 2 | import sys |
||
| 3 | from tqdm import tqdm |
||
| 4 | import os.path |
||
| 5 | from os import path |
||
| 6 | from googleapiclient.discovery import build |
||
| 7 | from google_auth_oauthlib.flow import InstalledAppFlow |
||
| 8 | from google.auth.transport.requests import Request |
||
| 9 | from google.oauth2.credentials import Credentials |
||
| 10 | import json |
||
| 11 | from modules import get_settings |
||
| 12 | |||
| 13 | SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] |
||
| 14 | SAMPLE_RANGE_NAME = 'A1:AA68' |
||
| 15 | CREDENTIALS_FILE = 'pull_config/credentials/client_secret_824511649166-rd0kn8jg71odnik0backligb356p0vc8.apps' \ |
||
| 16 | '.googleusercontent' \ |
||
| 17 | '.com.json ' |
||
| 18 | |||
| 19 | SAMPLE_SPREADSHEET_ID_input = get_settings.get_settings("EXCEL_ID") |
||
| 20 | |||
| 21 | |||
| 22 | View Code Duplication | def import_from_sheets(): |
|
|
1 ignored issue
–
show
|
|||
| 23 | """ |
||
| 24 | |||
| 25 | :return: |
||
| 26 | :rtype: |
||
| 27 | """ |
||
| 28 | creds = None |
||
| 29 | # The file token.json stores the user's access and refresh tokens, and is |
||
| 30 | # created automatically when the authorization flow completes for the first |
||
| 31 | # time |
||
| 32 | if os.path.exists('token.json'): |
||
| 33 | creds = Credentials.from_authorized_user_file('token.json', SCOPES) |
||
| 34 | # If there are no (valid) credentials available, let the user log in |
||
| 35 | if not creds or not creds.valid: |
||
| 36 | if creds and creds.expired and creds.refresh_token: |
||
| 37 | creds.refresh(Request()) |
||
| 38 | else: |
||
| 39 | flow = InstalledAppFlow.from_client_secrets_file( |
||
| 40 | CREDENTIALS_FILE, SCOPES) |
||
| 41 | creds = flow.run_local_server(port=0) |
||
| 42 | # Save the credentials for the next run |
||
| 43 | with open('token.json', 'w') as token: |
||
| 44 | token.write(creds.to_json()) |
||
| 45 | |||
| 46 | service = build('sheets', 'v4', credentials=creds) |
||
| 47 | |||
| 48 | # Call the Sheets API |
||
| 49 | sheet = service.spreadsheets() |
||
| 50 | result_input = sheet.values().get(spreadsheetId=SAMPLE_SPREADSHEET_ID_input, range=SAMPLE_RANGE_NAME).execute() |
||
| 51 | values_input = result_input.get('values', []) |
||
| 52 | |||
| 53 | if not values_input: |
||
| 54 | print('No data found.') |
||
| 55 | return values_input |
||
| 56 | |||
| 57 | |||
| 58 | View Code Duplication | def get_config(): |
|
|
1 ignored issue
–
show
|
|||
| 59 | """ |
||
| 60 | |||
| 61 | :return: |
||
| 62 | :rtype: |
||
| 63 | """ |
||
| 64 | pd.set_option('mode.chained_assignment', None) |
||
| 65 | print("Loading data") |
||
| 66 | values_input = import_from_sheets() |
||
| 67 | df = pd.DataFrame(values_input[1:], columns=values_input[0]) |
||
| 68 | |||
| 69 | print("Transforming data") |
||
| 70 | monsters_df = df[["name", "type"]] |
||
| 71 | monsters_df["type"] = pd.to_numeric(df["type"]) |
||
| 72 | |||
| 73 | triggers = df.drop(['name', 'role', 'type', 'id'], axis=1) |
||
| 74 | triggers = triggers.applymap(lambda s: s.lower() if isinstance(s) == str else s) |
||
| 75 | # triggers = triggers.applymap(lambda s: unidecode.unidecode(s) if type(s) == str else s) |
||
| 76 | |||
| 77 | triggers_list = [] |
||
| 78 | with tqdm(total=len(triggers), file=sys.stdout) as pbar: |
||
| 79 | for row in triggers.itertuples(index=False): |
||
| 80 | helpt = pd.Series(row) |
||
| 81 | helpt = helpt[~helpt.isna()] |
||
| 82 | # Drop empty strings |
||
| 83 | helpt = pd.Series(filter(None, helpt)) |
||
| 84 | # Copy strings with spaces without keeping them |
||
| 85 | for trigger in helpt: |
||
| 86 | trigger_nospace = trigger.replace(' ', '') |
||
| 87 | if trigger_nospace != trigger: |
||
| 88 | helpt = helpt.append(pd.Series(trigger_nospace)) |
||
| 89 | helpt = helpt.drop_duplicates() |
||
| 90 | triggers_list.append(helpt) |
||
| 91 | pbar.update(1) |
||
| 92 | |||
| 93 | print("Creating trigger structure") |
||
| 94 | triggers_def = [] |
||
| 95 | with tqdm(total=len(triggers_list), file=sys.stdout) as pbar: |
||
| 96 | for i in triggers_list: |
||
| 97 | triggers_def.append(list(i)) |
||
| 98 | pbar.update(1) |
||
| 99 | triggers_def_series = pd.Series(triggers_def) |
||
| 100 | monsters_df.insert(loc=0, column='triggers', value=triggers_def_series) |
||
| 101 | |||
| 102 | print("Creating output") |
||
| 103 | |||
| 104 | types = {'id': [4, 3, 2, 1, 0], 'label': ["Common", "Event_Likan", "Event_Ulf", "Legendary", "Rare"]} |
||
| 105 | types_df = pd.DataFrame(data=types) |
||
| 106 | milestones = {'total': [150, 1000, 5000], 'name': ["Rare Spotter", "Legendary Spotter", "Mythic Spotter"]} |
||
| 107 | milestones_df = pd.DataFrame(data=milestones) |
||
| 108 | json_final = {'milestones': milestones_df, 'types': types_df, 'commands': monsters_df} |
||
| 109 | |||
| 110 | # convert dataframes into dictionaries |
||
| 111 | data_dict = { |
||
| 112 | key: json_final[key].to_dict(orient='records') |
||
| 113 | for key in json_final |
||
| 114 | } |
||
| 115 | |||
| 116 | # write to disk |
||
| 117 | with open('json_files/config.json', 'w', encoding='utf8') as f: |
||
| 118 | json.dump( |
||
| 119 | data_dict, |
||
| 120 | f, |
||
| 121 | indent=4, |
||
| 122 | ensure_ascii=False, |
||
| 123 | sort_keys=False |
||
| 124 | ) |
||
| 125 | with open('modules/pull_config/output/config.txt', 'w', encoding='utf8') as f: |
||
| 126 | json.dump( |
||
| 127 | data_dict, |
||
| 128 | f, |
||
| 129 | indent=4, |
||
| 130 | ensure_ascii=False |
||
| 131 | ) |
||
| 132 | |||
| 133 | print(".json saved") |
||
| 134 | |||
| 135 | |||
| 136 | if __name__ == "__main__": |
||
| 137 | get_config() |
||
| 138 |