Passed
Push — main ( f7b31c...1a3ff0 )
by Bartosz
02:52 queued 01:23
created

create_output()   A

Complexity

Conditions 1

Size

Total Lines 17
Code Lines 15

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 15
dl 0
loc 17
rs 9.65
c 0
b 0
f 0
cc 1
nop 1
1
import pandas as pd
2
import os.path
3
from googleapiclient.discovery import build
4
from google_auth_oauthlib.flow import InstalledAppFlow
5
from google.auth.transport.requests import Request
6
from google.oauth2.credentials import Credentials
7
import json
8
from modules import get_settings
9
10
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
11
SAMPLE_RANGE_NAME = 'A1:AA68'
12
CREDENTIALS_FILE = 'pull_config/credentials/client_secret.com.json '
13
14
SAMPLE_SPREADSHEET_ID_input = get_settings.get_settings("EXCEL_ID")
15
16
17
def import_from_sheets():
18
    """
19
20
    :return:
21
    :rtype:
22
    """
23
    token = "token.json"
24
    creds = None
25
    # The file token.json stores the user's access and refresh tokens, and is
26
    # created automatically when the authorization flow completes for the first time
27
    if os.path.exists(token):
28
        creds = Credentials.from_authorized_user_file(token, SCOPES)
29
    # If there are no (valid) credentials available, let the user log in
30
    if not creds or not creds.valid:
31
        if creds and creds.expired and creds.refresh_token:
32
            creds.refresh(Request())
33
        else:
34
            flow = InstalledAppFlow.from_client_secrets_file(
35
                CREDENTIALS_FILE, SCOPES)
36
            creds = flow.run_local_server(port=0)
37
        # Save the credentials for the next run
38
        with open(token, 'w') as token:
39
            token.write(creds.to_json())
40
41
    service = build('sheets', 'v4', credentials=creds)
42
43
    # Call the Sheets API
44
    sheet = service.spreadsheets()
45
    result_input = sheet.values().get(spreadsheetId=SAMPLE_SPREADSHEET_ID_input, range=SAMPLE_RANGE_NAME).execute()
46
    values_input = result_input.get('values', [])
47
48
    if not values_input:
49
        print(f"[{get_config.__name__}]: No data found.")
50
    return values_input
51
52
53
def create_trigger_list(triggers) -> list:
54
    triggers_list = []
55
    for row in triggers.itertuples(index=False):
56
        help_ser = pd.Series(row)
57
        help_ser = help_ser[~help_ser.isna()]
58
        # Drop empty strings
59
        help_ser = pd.Series(filter(None, help_ser))
60
        # Copy strings with spaces without keeping them
61
        for trigger in help_ser:
62
            trigger_nospace = trigger.replace(' ', '')
63
            help_ser = help_ser.append(pd.Series(trigger_nospace))
64
        help_ser = help_ser.drop_duplicates()
65
        triggers_list.append(help_ser)
66
    return triggers_list
67
68
69
def create_output(monsters_df) -> dict:
70
    types = {'id': [4, 3, 2, 1, 0], 'label': ["Common", "Event0", "Event1", "Legendary", "Rare"]}
71
    types_df = pd.DataFrame(data=types)
72
    total_milestones = {"Rare Spotter": [150], "tescior": 151, "Pepega Spotter": [1000], "Pog Spotter": [2000],
73
                        "Pogmare Spotter": [3000],
74
                        "Legendary Spotter": [4000], "Mythic Spotter": [5000]}
75
    total_milestones_df = pd.DataFrame(data=total_milestones)
76
    common_milestones = {"Common Killer": [100], "Common Slayer": [150]}
77
    common_milestones_df = pd.DataFrame(data=common_milestones)
78
    json_final = {'total_milestones': total_milestones_df, 'common_milestones': common_milestones_df,
79
                  'types': types_df, 'commands': monsters_df}
80
    # convert dataframes into dictionaries
81
    data_dict = {
82
        key: json_final[key].to_dict(orient='records')
83
        for key in json_final
84
    }
85
    return data_dict
86
87
88
def get_config():
89
    """
90
91
    :return:
92
    :rtype:
93
    """
94
    pd.set_option('mode.chained_assignment', None)
95
    print(f"[{get_config.__name__}]: Loading data")
96
    values_input = import_from_sheets()
97
    df = pd.DataFrame(values_input[1:], columns=values_input[0])
98
99
    print(f"[{get_config.__name__}]: Transforming data")
100
    monsters_df = df[["name", "type"]]
101
    monsters_df["type"] = pd.to_numeric(df["type"])
102
103
    triggers = df.drop(['name', 'role', 'type', 'id'], axis=1)
104
    triggers = triggers.applymap(lambda s: s.lower() if type(s) == str else s)
105
106
    triggers_list = create_trigger_list(triggers)
107
108
    print(f"[{get_config.__name__}]: Creating trigger structure")
109
    triggers_def = []
110
    for i in triggers_list:
111
        triggers_def.append(list(i))
112
    triggers_def_series = pd.Series(triggers_def)
113
    monsters_df.insert(loc=0, column='triggers', value=triggers_def_series)
114
115
    print(f"[{get_config.__name__}]: Creating output")
116
    data_dict = create_output(monsters_df)
117
118
    # write to disk
119
    with open('server_files/config.json', 'w', encoding='utf8') as f:
120
        json.dump(
121
            data_dict,
122
            f,
123
            indent=4,
124
            ensure_ascii=False,
125
            sort_keys=False
126
        )
127
    print(f"[{get_config.__name__}]: .json saved")
128
129
130
def main():
131
    get_config()
132
133
134
if __name__ == "__main__":
135
    main()
136