Conditions | 7 |
Total Lines | 65 |
Code Lines | 45 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | import pandas as pd |
||
52 | def get_config(): |
||
53 | """ |
||
54 | |||
55 | :return: |
||
56 | :rtype: |
||
57 | """ |
||
58 | pd.set_option('mode.chained_assignment', None) |
||
59 | print("Loading data") |
||
60 | values_input = import_from_sheets() |
||
61 | df = pd.DataFrame(values_input[1:], columns=values_input[0]) |
||
62 | |||
63 | print("Transforming data") |
||
64 | monsters_df = df[["name", "type"]] |
||
65 | monsters_df["type"] = pd.to_numeric(df["type"]) |
||
66 | |||
67 | triggers = df.drop(['name', 'role', 'type', 'id'], axis=1) |
||
68 | triggers = triggers.applymap(lambda s: s.lower() if type(s) == str else s) |
||
69 | # triggers = triggers.applymap(lambda s: unidecode.unidecode(s) if type(s) == str else s) |
||
70 | |||
71 | triggers_list = [] |
||
72 | for row in triggers.itertuples(index=False): |
||
73 | helpt = pd.Series(row) |
||
74 | helpt = helpt[~helpt.isna()] |
||
75 | # Drop empty strings |
||
76 | helpt = pd.Series(filter(None, helpt)) |
||
77 | # Copy strings with spaces without keeping them |
||
78 | for trigger in helpt: |
||
79 | trigger_nospace = trigger.replace(' ', '') |
||
80 | helpt = helpt.append(pd.Series(trigger_nospace)) |
||
81 | helpt = helpt.drop_duplicates() |
||
82 | triggers_list.append(helpt) |
||
83 | |||
84 | print("Creating trigger structure") |
||
85 | triggers_def = [] |
||
86 | for i in triggers_list: |
||
87 | triggers_def.append(list(i)) |
||
88 | triggers_def_series = pd.Series(triggers_def) |
||
89 | monsters_df.insert(loc=0, column='triggers', value=triggers_def_series) |
||
90 | |||
91 | print("Creating output") |
||
92 | |||
93 | types = {'id': [4, 3, 2, 1, 0], 'label': ["Common", "Event0", "Event1", "Legendary", "Rare"]} |
||
94 | types_df = pd.DataFrame(data=types) |
||
95 | milestones = {'total': [150, 1000, 2000, 3000, 4000, 5000], |
||
96 | 'name': ["Rare Spotter", "Pepega Spotter", "Pog Spotter", "Pogmare Spotter", "Legendary Spotter", |
||
97 | "Mythic Spotter"]} |
||
98 | milestones_df = pd.DataFrame(data=milestones) |
||
99 | json_final = {'milestones': milestones_df, 'types': types_df, 'commands': monsters_df} |
||
100 | |||
101 | # convert dataframes into dictionaries |
||
102 | data_dict = { |
||
103 | key: json_final[key].to_dict(orient='records') |
||
104 | for key in json_final |
||
105 | } |
||
106 | |||
107 | # write to disk |
||
108 | with open('server_files/config.json', 'w', encoding='utf8') as f: |
||
109 | json.dump( |
||
110 | data_dict, |
||
111 | f, |
||
112 | indent=4, |
||
113 | ensure_ascii=False, |
||
114 | sort_keys=False |
||
115 | ) |
||
116 | print(".json saved") |
||
117 | |||
121 |