build.modules.pull_config.pull_config.main()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 2
Code Lines 2

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 2
nop 0
dl 0
loc 2
rs 10
c 0
b 0
f 0
1
import json
2
import os.path
3
4
import pandas as pd
5
from google.auth.transport.requests import Request
6
from google.oauth2.credentials import Credentials
7
from google_auth_oauthlib.flow import InstalledAppFlow
8
from googleapiclient.discovery import build
9
from numpyencoder import NumpyEncoder
10
11
# from main import MyBot
12
from modules import get_settings
13
14
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
15
SAMPLE_RANGE_NAME = 'A1:AA200'
16
17
SAMPLE_SPREADSHEET_ID_input = get_settings.get_settings("EXCEL_ID")
18
19
20
def handle_creds(creds, token: str) -> None:
21
    if creds and creds.expired and creds.refresh_token:
22
        creds.refresh(Request())
23
    else:
24
        flow = InstalledAppFlow.from_client_secrets_file(
25
            'pull_config/credentials/client_secret.json', SCOPES)
26
        creds = flow.run_local_server(port=0)
27
    # Save the credentials for the next run
28
    with open(token, 'w') as token:
29
        token.write(creds.to_json())
30
31
32
def import_from_sheets():
33
    token: str = "token.json"
34
    creds = None
35
    # The file token.json stores the user's access and refresh tokens, and is
36
    # created automatically when the authorization flow completes for the first time
37
    if os.path.exists(token):
38
        creds = Credentials.from_authorized_user_file(token, SCOPES)
39
    # If there are no (valid) credentials available, let the user log in
40
    if not creds or not creds.valid:
41
        handle_creds(creds, token)
42
43
    service = build('sheets', 'v4', credentials=creds)
44
45
    # Call the Sheets API
46
    sheet = service.spreadsheets()
47
    result_input = sheet.values().get(spreadsheetId=SAMPLE_SPREADSHEET_ID_input, range=SAMPLE_RANGE_NAME).execute()
48
    values_input = result_input.get('values', [])
49
50
    # if not values_input:
51
    #     dt_string = MyBot.get_current_time()
52
    #     print(f"({dt_string})\t[{get_config.__name__}]: No data found.")
53
    return values_input
54
55
56
def create_trigger_list(triggers) -> list:
57
    triggers_list = []
58
    for row in triggers.itertuples(index=False):
59
        help_ser = pd.Series(row)
60
        help_ser = help_ser[~help_ser.isna()]
61
        # Drop empty strings
62
        help_ser = pd.Series(filter(None, help_ser))
63
        # Copy strings with spaces without keeping them
64
        for trigger in help_ser:
65
            trigger_nospace = trigger.replace(' ', '')
66
            help_ser = help_ser.append(pd.Series(trigger_nospace))
67
        help_ser = help_ser.drop_duplicates()
68
        triggers_list.append(help_ser)
69
    return triggers_list
70
71
72
def create_output(monsters_df: pd.DataFrame) -> dict:
73
    types = {'id': [4, 3, 2, 1, 0], 'label': ["Common", "Event2", "Event1", "Legendary", "Rare"]}
74
    types_df = pd.DataFrame(data=types)
75
    total_milestones = {"Sunday Spotter I": [100], "Sunday Spotter II": [200], "Sunday Spotter III": [300],
76
                        "Rare Spotter I": [500], "Rare Spotter II": [750], "Rare Spotter III": [1000],
77
                        "Pro Spotter I": [1500], "Pro Spotter II": [2000], "Pro Spotter III": [2500],
78
                        "Legendary Spotter I": [3500], "Legendary Spotter II": [4500], "Legendary Spotter III": [5500],
79
                        "Mythic Spotter I": [7500], "Mythic Spotter II": [9500], "Mythic Spotter III": [11500],
80
                        "Pogmare Spotter": [15000]}
81
    total_milestones_df = pd.DataFrame(data=total_milestones)
82
    common_milestones = {"Common Spotter": [100], "Common Killer": [500], "Common Slayer": [1000],
83
                         "Common Destroyer": [1500], "Common Annihilator": [2500]}
84
    common_milestones_df = pd.DataFrame(data=common_milestones)
85
    json_final = {'total_milestones': total_milestones_df, 'common_milestones': common_milestones_df,
86
                  'types': types_df, 'commands': monsters_df}
87
    return {
88
        key: json_final[key].to_dict(orient='records')
89
        for key in json_final
90
    }
91
92
93
def create_trigger_structure(triggers_list: list) -> pd.Series:
94
    triggers_def = [list(i) for i in triggers_list]
95
    return pd.Series(triggers_def)
96
97
98
def get_config() -> None:
99
    pd.set_option('mode.chained_assignment', None)
100
    values_input = import_from_sheets()
101
    df = pd.DataFrame(values_input[1:], columns=values_input[0])
102
103
    monsters_df = df[["name", "type"]]
104
    monsters_df["type"] = pd.to_numeric(df["type"])
105
106
    triggers = df.drop(['name', 'role', 'type', 'id'], axis=1)
107
    triggers = triggers.applymap(lambda s: s.lower() if type(s) == str else s)
108
109
    triggers_list = create_trigger_list(triggers)
110
111
    triggers_def = create_trigger_structure(triggers_list)
112
    monsters_df.insert(loc=0, column='triggers', value=triggers_def)
113
114
    data_dict = create_output(monsters_df)
115
116
    # write to disk
117
    with open('server_files/config.json', 'w', encoding='utf8') as f:
118
        json.dump(data_dict, f, indent=4, ensure_ascii=False, sort_keys=False, cls=NumpyEncoder)
119
120
121
def main() -> None:
122
    get_config()
123
124
125
if __name__ == "__main__":
126
    main()
127