|
1
|
|
|
# --- |
|
2
|
|
|
# jupyter: |
|
3
|
|
|
# jupytext: |
|
4
|
|
|
# text_representation: |
|
5
|
|
|
# extension: .py |
|
6
|
|
|
# format_name: percent |
|
7
|
|
|
# format_version: '1.1' |
|
8
|
|
|
# jupytext_version: 0.8.5 |
|
9
|
|
|
# kernelspec: |
|
10
|
|
|
# display_name: Python 3 |
|
11
|
|
|
# language: python |
|
12
|
|
|
# name: python3 |
|
13
|
|
|
# language_info: |
|
14
|
|
|
# codemirror_mode: |
|
15
|
|
|
# name: ipython |
|
16
|
|
|
# version: 3 |
|
17
|
|
|
# file_extension: .py |
|
18
|
|
|
# mimetype: text/x-python |
|
19
|
|
|
# name: python |
|
20
|
|
|
# nbconvert_exporter: python |
|
21
|
|
|
# pygments_lexer: ipython3 |
|
22
|
|
|
# version: 3.6.6 |
|
23
|
|
|
# --- |
|
24
|
|
|
|
|
25
|
|
|
# %% {"tags": ["parameters"]} |
|
26
|
|
|
# Our default parameters |
|
27
|
|
|
# This cell has a "parameters" tag, means that it defines the parameters for use in the notebook |
|
28
|
|
|
run_date = '2018-11-18' |
|
29
|
|
|
source_id = 'sensor1' |
|
30
|
|
|
nb_days = 32 |
|
31
|
|
|
|
|
32
|
|
|
# %% |
|
33
|
|
|
import numpy as np |
|
34
|
|
|
import pandas as pd |
|
35
|
|
|
import papermill as pm |
|
36
|
|
|
import matplotlib.pyplot as plt |
|
37
|
|
|
from datetime import datetime, timedelta |
|
38
|
|
|
import os |
|
39
|
|
|
import statsmodels.api as sm |
|
40
|
|
|
from pylab import rcParams |
|
41
|
|
|
import itertools |
|
42
|
|
|
|
|
43
|
|
|
# turn off interactive plotting to avoid double plotting |
|
44
|
|
|
plt.ioff() |
|
45
|
|
|
|
|
46
|
|
|
# %% |
|
47
|
|
|
data_dir = "../data/input/step1" |
|
48
|
|
|
data = None |
|
49
|
|
|
run_datetime = datetime.strptime(run_date, '%Y-%m-%d') |
|
50
|
|
|
for i in range(nb_days): |
|
51
|
|
|
deltatime = run_datetime - timedelta(i) |
|
52
|
|
|
month_partition = deltatime.strftime("%Y-%m") |
|
53
|
|
|
delta = datetime.strftime(deltatime, '%Y-%m-%d') |
|
54
|
|
|
file = os.path.join(data_dir, month_partition, delta + "-" + source_id + ".csv") |
|
55
|
|
|
if os.path.exists(file): |
|
56
|
|
|
print("Loading " + file) |
|
57
|
|
|
new = pd.read_csv(file) |
|
58
|
|
|
if data is not None: |
|
59
|
|
|
data = pd.concat([data, new]) |
|
60
|
|
|
else: |
|
61
|
|
|
data = new |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
# %% |
|
65
|
|
|
data['date'] = data['date'].apply(lambda x : datetime.strptime(x, "%Y-%m-%d %H:%M:%S")) |
|
66
|
|
|
print(data['date'].describe()) |
|
67
|
|
|
data.describe() |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
# %% |
|
71
|
|
|
data = data.sort_values('date').set_index('date', drop=True) |
|
72
|
|
|
data = data.asfreq(freq="5min") |
|
73
|
|
|
data.head(5) |
|
74
|
|
|
|
|
75
|
|
|
# %% [markdown] |
|
76
|
|
|
# https://towardsdatascience.com/an-end-to-end-project-on-time-series-analysis-and-forecasting-with-python-4835e6bf050b |
|
77
|
|
|
# |
|
78
|
|
|
# |
|
79
|
|
|
# https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html |
|
80
|
|
|
|
|
81
|
|
|
# %% |
|
82
|
|
|
rcParams['figure.figsize'] = 18, 8 |
|
83
|
|
|
decomposition = sm.tsa.seasonal_decompose(data['mydata'], model='additive', freq=288) |
|
84
|
|
|
fig = decomposition.plot() |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
|
|
# %% |
|
88
|
|
|
p = d = q = range(0, 2) |
|
89
|
|
|
pdq = list(itertools.product(p, d, q)) |
|
90
|
|
|
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))] |
|
91
|
|
|
|
|
92
|
|
|
print('Examples of parameter combinations for Seasonal ARIMA...') |
|
93
|
|
|
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1])) |
|
94
|
|
|
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2])) |
|
95
|
|
|
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3])) |
|
96
|
|
|
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4])) |
|
97
|
|
|
|
|
98
|
|
|
# %% |
|
99
|
|
|
scores = { |
|
100
|
|
|
"AIC" : [], |
|
101
|
|
|
"param" : [], |
|
102
|
|
|
"param_seasonal" : [] |
|
103
|
|
|
} |
|
104
|
|
|
for param in pdq: |
|
105
|
|
|
for param_seasonal in seasonal_pdq: |
|
106
|
|
|
try: |
|
107
|
|
|
mod = sm.tsa.statespace.SARIMAX( |
|
108
|
|
|
data['mydata'], |
|
109
|
|
|
order=param, |
|
110
|
|
|
seasonal_order=param_seasonal, |
|
111
|
|
|
enforce_stationarity=False, |
|
112
|
|
|
enforce_invertibility=False |
|
113
|
|
|
) |
|
114
|
|
|
results = mod.fit() |
|
115
|
|
|
scores['AIC'].append(results.aic) |
|
116
|
|
|
scores['param'].append(param) |
|
117
|
|
|
scores['param_seasonal'].append(param_seasonal) |
|
118
|
|
|
print('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic)) |
|
119
|
|
|
except: |
|
120
|
|
|
continue |
|
121
|
|
|
scores = pd.DataFrame.from_dict(scores) |
|
122
|
|
|
scores.sort_values('AIC').head(5) |
|
123
|
|
|
|
|
124
|
|
|
# %% |
|
125
|
|
|
best = scores.sort_values('AIC').head(1).values[0] |
|
126
|
|
|
mod = sm.tsa.statespace.SARIMAX(data['mydata'], |
|
127
|
|
|
order=best[1], |
|
128
|
|
|
seasonal_order=best[2], |
|
129
|
|
|
enforce_stationarity=True, |
|
130
|
|
|
enforce_invertibility=False) |
|
131
|
|
|
results = mod.fit() |
|
132
|
|
|
print(results.summary().tables[1]) |
|
133
|
|
|
|
|
134
|
|
|
# %% |
|
135
|
|
|
results.plot_diagnostics(figsize=(16, 8)) |
|
136
|
|
|
plt.show() |
|
137
|
|
|
|
|
138
|
|
|
# %% |
|
139
|
|
|
pred = results.get_prediction(start=(run_datetime - timedelta(1)), dynamic=False) |
|
140
|
|
|
pred_ci = pred.conf_int() |
|
141
|
|
|
|
|
142
|
|
|
fig, ax = plt.subplots() |
|
143
|
|
|
ax.plot(data[data.index > (run_datetime - timedelta(3))]['mydata'], label='observed') |
|
144
|
|
|
ax.plot(pred.predicted_mean, label='One-step ahead Forecast', alpha=.7) |
|
145
|
|
|
ax.fill_between(pred_ci.index, |
|
146
|
|
|
pred_ci.iloc[:, 0], |
|
147
|
|
|
pred_ci.iloc[:, 1], color='k', alpha=.2) |
|
148
|
|
|
ax.set_xlabel('Date') |
|
149
|
|
|
ax.set_ylabel('mydata') |
|
150
|
|
|
ax.set(title='Results of ARIMA{}x{}12 - AIC:{} on {}'.format(best[1], best[2], round(best[0]), run_date)) |
|
151
|
|
|
fig.legend() |
|
152
|
|
|
pm.display('arima_results_fig', fig) |
|
153
|
|
|
|
|
154
|
|
|
# %% |
|
155
|
|
|
pred.save("../data/output/step2/prediction_model_" + run_date + "-" + source_id) |
|
156
|
|
|
|
|
157
|
|
|
# %% |
|
158
|
|
|
|
|
159
|
|
|
|
|
160
|
|
|
|
|
161
|
|
|
|