1
|
|
|
# --- |
2
|
|
|
# jupyter: |
3
|
|
|
# jupytext: |
4
|
|
|
# text_representation: |
5
|
|
|
# extension: .py |
6
|
|
|
# format_name: percent |
7
|
|
|
# format_version: '1.1' |
8
|
|
|
# jupytext_version: 0.8.5 |
9
|
|
|
# kernelspec: |
10
|
|
|
# display_name: Python 3 |
11
|
|
|
# language: python |
12
|
|
|
# name: python3 |
13
|
|
|
# language_info: |
14
|
|
|
# codemirror_mode: |
15
|
|
|
# name: ipython |
16
|
|
|
# version: 3 |
17
|
|
|
# file_extension: .py |
18
|
|
|
# mimetype: text/x-python |
19
|
|
|
# name: python |
20
|
|
|
# nbconvert_exporter: python |
21
|
|
|
# pygments_lexer: ipython3 |
22
|
|
|
# version: 3.6.6 |
23
|
|
|
# --- |
24
|
|
|
|
25
|
|
|
# %% {"tags": ["parameters"]} |
26
|
|
|
# Our default parameters |
27
|
|
|
# This cell has a "parameters" tag, means that it defines the parameters for use in the notebook |
28
|
|
|
run_date = '2018-11-18' |
29
|
|
|
source_id = 'sensor1' |
30
|
|
|
nb_days = 32 |
31
|
|
|
|
32
|
|
|
# %% |
33
|
|
|
import numpy as np |
34
|
|
|
import pandas as pd |
35
|
|
|
import papermill as pm |
36
|
|
|
import matplotlib.pyplot as plt |
37
|
|
|
from datetime import datetime, timedelta |
38
|
|
|
import os |
39
|
|
|
import statsmodels.api as sm |
40
|
|
|
from pylab import rcParams |
41
|
|
|
import itertools |
42
|
|
|
|
43
|
|
|
# turn off interactive plotting to avoid double plotting |
44
|
|
|
plt.ioff() |
45
|
|
|
|
46
|
|
|
# %% |
47
|
|
|
data_dir = "../data/input/step1" |
48
|
|
|
data = None |
49
|
|
|
run_datetime = datetime.strptime(run_date, '%Y-%m-%d') |
50
|
|
|
for i in range(nb_days): |
51
|
|
|
deltatime = run_datetime - timedelta(i) |
52
|
|
|
month_partition = deltatime.strftime("%Y-%m") |
53
|
|
|
delta = datetime.strftime(deltatime, '%Y-%m-%d') |
54
|
|
|
file = os.path.join(data_dir, month_partition, delta + "-" + source_id + ".csv") |
55
|
|
|
if os.path.exists(file): |
56
|
|
|
print("Loading " + file) |
57
|
|
|
new = pd.read_csv(file) |
58
|
|
|
if data is not None: |
59
|
|
|
data = pd.concat([data, new]) |
60
|
|
|
else: |
61
|
|
|
data = new |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
# %% |
65
|
|
|
data['date'] = data['date'].apply(lambda x : datetime.strptime(x, "%Y-%m-%d %H:%M:%S")) |
66
|
|
|
print(data['date'].describe()) |
67
|
|
|
data.describe() |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
# %% |
71
|
|
|
data = data.sort_values('date').set_index('date', drop=True) |
72
|
|
|
data = data.asfreq(freq="5min") |
73
|
|
|
data.head(5) |
74
|
|
|
|
75
|
|
|
# %% [markdown] |
76
|
|
|
# https://towardsdatascience.com/an-end-to-end-project-on-time-series-analysis-and-forecasting-with-python-4835e6bf050b |
77
|
|
|
# |
78
|
|
|
# |
79
|
|
|
# https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html |
80
|
|
|
|
81
|
|
|
# %% |
82
|
|
|
rcParams['figure.figsize'] = 18, 8 |
83
|
|
|
decomposition = sm.tsa.seasonal_decompose(data['mydata'], model='additive', freq=288) |
84
|
|
|
fig = decomposition.plot() |
85
|
|
|
|
86
|
|
|
|
87
|
|
|
# %% |
88
|
|
|
p = d = q = range(0, 2) |
89
|
|
|
pdq = list(itertools.product(p, d, q)) |
90
|
|
|
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))] |
91
|
|
|
|
92
|
|
|
print('Examples of parameter combinations for Seasonal ARIMA...') |
93
|
|
|
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1])) |
94
|
|
|
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2])) |
95
|
|
|
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3])) |
96
|
|
|
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4])) |
97
|
|
|
|
98
|
|
|
# %% |
99
|
|
|
scores = { |
100
|
|
|
"AIC" : [], |
101
|
|
|
"param" : [], |
102
|
|
|
"param_seasonal" : [] |
103
|
|
|
} |
104
|
|
|
for param in pdq: |
105
|
|
|
for param_seasonal in seasonal_pdq: |
106
|
|
|
try: |
107
|
|
|
mod = sm.tsa.statespace.SARIMAX( |
108
|
|
|
data['mydata'], |
109
|
|
|
order=param, |
110
|
|
|
seasonal_order=param_seasonal, |
111
|
|
|
enforce_stationarity=False, |
112
|
|
|
enforce_invertibility=False |
113
|
|
|
) |
114
|
|
|
results = mod.fit() |
115
|
|
|
scores['AIC'].append(results.aic) |
116
|
|
|
scores['param'].append(param) |
117
|
|
|
scores['param_seasonal'].append(param_seasonal) |
118
|
|
|
print('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic)) |
119
|
|
|
except: |
120
|
|
|
continue |
121
|
|
|
scores = pd.DataFrame.from_dict(scores) |
122
|
|
|
scores.sort_values('AIC').head(5) |
123
|
|
|
|
124
|
|
|
# %% |
125
|
|
|
best = scores.sort_values('AIC').head(1).values[0] |
126
|
|
|
mod = sm.tsa.statespace.SARIMAX(data['mydata'], |
127
|
|
|
order=best[1], |
128
|
|
|
seasonal_order=best[2], |
129
|
|
|
enforce_stationarity=True, |
130
|
|
|
enforce_invertibility=False) |
131
|
|
|
results = mod.fit() |
132
|
|
|
print(results.summary().tables[1]) |
133
|
|
|
|
134
|
|
|
# %% |
135
|
|
|
results.plot_diagnostics(figsize=(16, 8)) |
136
|
|
|
plt.show() |
137
|
|
|
|
138
|
|
|
# %% |
139
|
|
|
pred = results.get_prediction(start=(run_datetime - timedelta(1)), dynamic=False) |
140
|
|
|
pred_ci = pred.conf_int() |
141
|
|
|
|
142
|
|
|
fig, ax = plt.subplots() |
143
|
|
|
ax.plot(data[data.index > (run_datetime - timedelta(3))]['mydata'], label='observed') |
144
|
|
|
ax.plot(pred.predicted_mean, label='One-step ahead Forecast', alpha=.7) |
145
|
|
|
ax.fill_between(pred_ci.index, |
146
|
|
|
pred_ci.iloc[:, 0], |
147
|
|
|
pred_ci.iloc[:, 1], color='k', alpha=.2) |
148
|
|
|
ax.set_xlabel('Date') |
149
|
|
|
ax.set_ylabel('mydata') |
150
|
|
|
ax.set(title='Results of ARIMA{}x{}12 - AIC:{} on {}'.format(best[1], best[2], round(best[0]), run_date)) |
151
|
|
|
fig.legend() |
152
|
|
|
pm.display('arima_results_fig', fig) |
153
|
|
|
|
154
|
|
|
# %% |
155
|
|
|
pred.save("../data/output/step2/prediction_model_" + run_date + "-" + source_id) |
156
|
|
|
|
157
|
|
|
# %% |
158
|
|
|
|
159
|
|
|
|
160
|
|
|
|
161
|
|
|
|