|
1
|
|
|
# --- |
|
2
|
|
|
# jupyter: |
|
3
|
|
|
# jupytext: |
|
4
|
|
|
# cell_metadata_json: true |
|
5
|
|
|
# formats: ipynb,py:percent |
|
6
|
|
|
# notebook_metadata_filter: language_info |
|
7
|
|
|
# text_representation: |
|
8
|
|
|
# extension: .py |
|
9
|
|
|
# format_name: percent |
|
10
|
|
|
# format_version: '1.3' |
|
11
|
|
|
# jupytext_version: 1.5.2 |
|
12
|
|
|
# kernelspec: |
|
13
|
|
|
# display_name: Python 3 |
|
14
|
|
|
# language: python |
|
15
|
|
|
# name: python3 |
|
16
|
|
|
# language_info: |
|
17
|
|
|
# codemirror_mode: |
|
18
|
|
|
# name: ipython |
|
19
|
|
|
# version: 3 |
|
20
|
|
|
# file_extension: .py |
|
21
|
|
|
# mimetype: text/x-python |
|
22
|
|
|
# name: python |
|
23
|
|
|
# nbconvert_exporter: python |
|
24
|
|
|
# pygments_lexer: ipython3 |
|
25
|
|
|
# version: 3.8.4 |
|
26
|
|
|
# --- |
|
27
|
|
|
|
|
28
|
|
|
# %% [markdown] |
|
29
|
|
|
# # A papermill example: Fitting a model |
|
30
|
|
|
# |
|
31
|
|
|
|
|
32
|
|
|
# %% [markdown] |
|
33
|
|
|
# ### Specify default parameters |
|
34
|
|
|
# |
|
35
|
|
|
# This is a "parameters" cell, which defines default |
|
36
|
|
|
|
|
37
|
|
|
# %% {"tags": ["parameters"]} |
|
38
|
|
|
# Our default parameters |
|
39
|
|
|
# This cell has a "parameters" tag, means that it defines the parameters for use in the notebook |
|
40
|
|
|
start_date = "2001-08-05" |
|
41
|
|
|
stop_date = "2016-01-01" |
|
42
|
|
|
|
|
43
|
|
|
# %% [markdown] |
|
44
|
|
|
# ## Set up our packages and create the data |
|
45
|
|
|
# |
|
46
|
|
|
# We'll run `plt.ioff()` so that we don't get double plots in the notebook |
|
47
|
|
|
|
|
48
|
|
|
# %% |
|
49
|
|
|
import matplotlib.pyplot as plt |
|
50
|
|
|
import numpy as np |
|
51
|
|
|
import pandas as pd |
|
52
|
|
|
import scrapbook as sb |
|
53
|
|
|
|
|
54
|
|
|
plt.ioff() |
|
55
|
|
|
np.random.seed(1337) |
|
56
|
|
|
|
|
57
|
|
|
# %% |
|
58
|
|
|
# Generate some fake data by date |
|
59
|
|
|
dates = pd.date_range("2010-01-01", "2020-01-01") |
|
60
|
|
|
data = pd.DataFrame(np.random.randn(len(dates)), index=dates, columns=['mydata']) |
|
61
|
|
|
data = data.rolling(100).mean() # Smooth it so it looks purdy |
|
62
|
|
|
|
|
63
|
|
|
# %% [markdown] |
|
64
|
|
|
# ## Choose a subset of data to highlight |
|
65
|
|
|
# |
|
66
|
|
|
# Here we use the **start_date** and **stop_date** parameters, which are defined above by default, but can |
|
67
|
|
|
# be overwritten at runtime by papermill. |
|
68
|
|
|
|
|
69
|
|
|
# %% |
|
70
|
|
|
data_highlight = data.loc[start_date: stop_date] |
|
71
|
|
|
|
|
72
|
|
|
# %% [markdown] |
|
73
|
|
|
# We use the `pm.record()` function to keep track of how many records were included in the |
|
74
|
|
|
# highlighted section. This lets us inspect this value after running the notebook with papermill. |
|
75
|
|
|
# |
|
76
|
|
|
# We also include a ValueError if we've got a but in the start/stop times, which will be captured |
|
77
|
|
|
# and displayed by papermill if it's triggered. |
|
78
|
|
|
|
|
79
|
|
|
# %% |
|
80
|
|
|
num_records = len(data_highlight) |
|
81
|
|
|
sb.glue('num_records', num_records, display=True) |
|
82
|
|
|
if num_records == 0: |
|
83
|
|
|
raise ValueError("I have no data to highlight! Check that your dates are correct!") |
|
84
|
|
|
|
|
85
|
|
|
# %% [markdown] |
|
86
|
|
|
# ## Make our plot |
|
87
|
|
|
# |
|
88
|
|
|
# Below we'll generate a matplotlib figure with our highlighted dates. By calling `pm.display()`, papermill |
|
89
|
|
|
# will store the figure to the key that we've specified (`highlight_dates_fig`). This will let us inspect the |
|
90
|
|
|
# output later on. |
|
91
|
|
|
|
|
92
|
|
|
# %% |
|
93
|
|
|
fig, ax = plt.subplots() |
|
94
|
|
|
ax.plot(data.index, data['mydata'], c='k', alpha=.5) |
|
95
|
|
|
ax.plot(data_highlight.index, data_highlight['mydata'], c='r', lw=3) |
|
96
|
|
|
ax.set(title="Start: {}\nStop: {}".format(start_date, stop_date)) |
|
97
|
|
|
sb.glue('highlight_dates_fig', fig, display=True) |
|
98
|
|
|
|
|
99
|
|
|
# %% |
|
100
|
|
|
|
|
101
|
|
|
|
|
102
|
|
|
|
|
103
|
|
|
|