|
1
|
|
|
""" |
|
2
|
|
|
Project Euler Problem 8: Largest Product In A Series |
|
3
|
|
|
==================================================== |
|
4
|
|
|
|
|
5
|
|
|
.. module:: solutions.problem8 |
|
6
|
|
|
:synopsis: My solution to problem #8. |
|
7
|
|
|
|
|
8
|
|
|
The source code for this problem can be |
|
9
|
|
|
`found here <https://bitbucket.org/nekedome/project-euler/src/master/solutions/problem8.py>`_. |
|
10
|
|
|
|
|
11
|
|
|
Problem Statement |
|
12
|
|
|
################# |
|
13
|
|
|
|
|
14
|
|
|
The four adjacent digits in the :math:`1000`-digit number that have the greatest product are |
|
15
|
|
|
:math:`\\color{red}{9} \\times \\color{red}{9} \\times \\color{red}{8} \\times \\color{red}{9} = 5832`. |
|
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
.. math:: |
|
18
|
|
|
|
|
19
|
|
|
& 73167176531330624919225119674426574742355349194934 \\hookleftarrow \\\\ |
|
20
|
|
|
\\hookrightarrow & 96983520312774506326239578318016984801869478851843 \\hookleftarrow \\\\ |
|
21
|
|
|
\\hookrightarrow & 85861560789112949495459501737958331952853208805511 \\hookleftarrow \\\\ |
|
22
|
|
|
\\hookrightarrow & 12540698747158523863050715693290963295227443043557 \\hookleftarrow \\\\ |
|
23
|
|
|
\\hookrightarrow & 66896648950445244523161731856403098711121722383113 \\hookleftarrow \\\\ |
|
24
|
|
|
\\hookrightarrow & 62229893423380308135336276614282806444486645238749 \\hookleftarrow \\\\ |
|
25
|
|
|
\\hookrightarrow & 30358907296290491560440772390713810515859307960866 \\hookleftarrow \\\\ |
|
26
|
|
|
\\hookrightarrow & 70172427121883998797908792274921901699720888093776 \\hookleftarrow \\\\ |
|
27
|
|
|
\\hookrightarrow & 65727333001053367881220235421809751254540594752243 \\hookleftarrow \\\\ |
|
28
|
|
|
\\hookrightarrow & 52584907711670556013604839586446706324415722155397 \\hookleftarrow \\\\ |
|
29
|
|
|
\\hookrightarrow & 53697817977846174064955149290862569321978468622482 \\hookleftarrow \\\\ |
|
30
|
|
|
\\hookrightarrow & 83972241375657056057490261407972968652414535100474 \\hookleftarrow \\\\ |
|
31
|
|
|
\\hookrightarrow & 821663704844031\\color{red}{9989}0008895243450658541227588666881 \\hookleftarrow \\\\ |
|
|
|
|
|
|
32
|
|
|
\\hookrightarrow & 16427171479924442928230863465674813919123162824586 \\hookleftarrow \\\\ |
|
33
|
|
|
\\hookrightarrow & 17866458359124566529476545682848912883142607690042 \\hookleftarrow \\\\ |
|
34
|
|
|
\\hookrightarrow & 24219022671055626321111109370544217506941658960408 \\hookleftarrow \\\\ |
|
35
|
|
|
\\hookrightarrow & 07198403850962455444362981230987879927244284909188 \\hookleftarrow \\\\ |
|
36
|
|
|
\\hookrightarrow & 84580156166097919133875499200524063689912560717606 \\hookleftarrow \\\\ |
|
37
|
|
|
\\hookrightarrow & 05886116467109405077541002256983155200055935729725 \\hookleftarrow \\\\ |
|
38
|
|
|
\\hookrightarrow & 71636269561882670428252483600823257530420752963450 |
|
39
|
|
|
|
|
40
|
|
|
Find the thirteen adjacent digits in the :math:`1000`-digit number that have the greatest product. What is the value of |
|
|
|
|
|
|
41
|
|
|
this product? |
|
42
|
|
|
|
|
43
|
|
|
Solution Discussion |
|
44
|
|
|
################### |
|
45
|
|
|
|
|
46
|
|
|
We'll simply iterate over all :math:`13`-long sub-strings in a sliding window fashion. For each sub-string, compute the |
|
|
|
|
|
|
47
|
|
|
product of the integers. The maximum of these individuals products is the answer. |
|
48
|
|
|
|
|
49
|
|
|
Solution Implementation |
|
50
|
|
|
####################### |
|
51
|
|
|
|
|
52
|
|
|
.. literalinclude:: ../../solutions/problem8.py |
|
53
|
|
|
:language: python |
|
54
|
|
|
:lines: 57- |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
from functools import reduce |
|
58
|
|
|
from operator import mul |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
def solve(): |
|
62
|
|
|
""" Compute the answer to Project Euler's problem #8 """ |
|
63
|
|
|
|
|
64
|
|
|
# Build a list of the individual digits as integer objects |
|
65
|
|
|
series = """ |
|
66
|
|
|
73167176531330624919225119674426574742355349194934 |
|
67
|
|
|
96983520312774506326239578318016984801869478851843 |
|
68
|
|
|
85861560789112949495459501737958331952853208805511 |
|
69
|
|
|
12540698747158523863050715693290963295227443043557 |
|
70
|
|
|
66896648950445244523161731856403098711121722383113 |
|
71
|
|
|
62229893423380308135336276614282806444486645238749 |
|
72
|
|
|
30358907296290491560440772390713810515859307960866 |
|
73
|
|
|
70172427121883998797908792274921901699720888093776 |
|
74
|
|
|
65727333001053367881220235421809751254540594752243 |
|
75
|
|
|
52584907711670556013604839586446706324415722155397 |
|
76
|
|
|
53697817977846174064955149290862569321978468622482 |
|
77
|
|
|
83972241375657056057490261407972968652414535100474 |
|
78
|
|
|
82166370484403199890008895243450658541227588666881 |
|
79
|
|
|
16427171479924442928230863465674813919123162824586 |
|
80
|
|
|
17866458359124566529476545682848912883142607690042 |
|
81
|
|
|
24219022671055626321111109370544217506941658960408 |
|
82
|
|
|
07198403850962455444362981230987879927244284909188 |
|
83
|
|
|
84580156166097919133875499200524063689912560717606 |
|
84
|
|
|
05886116467109405077541002256983155200055935729725 |
|
85
|
|
|
71636269561882670428252483600823257530420752963450 |
|
86
|
|
|
""" |
|
87
|
|
|
series = series.replace(" ", "").replace("\n", "") |
|
88
|
|
|
integers = [int(character) for character in series] |
|
89
|
|
|
|
|
90
|
|
|
# Perform the search through all overlapping m-long subsets |
|
91
|
|
|
n = len(integers) |
|
|
|
|
|
|
92
|
|
|
m = 13 |
|
|
|
|
|
|
93
|
|
|
answer = 0 |
|
94
|
|
|
for i in range(n - m + 1): |
|
95
|
|
|
subset = integers[i:i+m] |
|
96
|
|
|
product = reduce(mul, subset, 1) |
|
97
|
|
|
answer = max(answer, product) |
|
98
|
|
|
return answer |
|
99
|
|
|
|
|
100
|
|
|
|
|
101
|
|
|
expected_answer = 23514624000 |
|
|
|
|
|
|
102
|
|
|
|
This check looks for lines that are too long. You can specify the maximum line length.