1
|
|
|
""" |
2
|
|
|
Project Euler Problem 45: Triangular, Pentagonal, And Hexagonal |
3
|
|
|
=============================================================== |
4
|
|
|
|
5
|
|
|
.. module:: solutions.problem45 |
6
|
|
|
:synopsis: My solution to problem #45. |
7
|
|
|
|
8
|
|
|
The source code for this problem can be |
9
|
|
|
`found here <https://bitbucket.org/nekedome/project-euler/src/master/solutions/problem45.py>`_. |
10
|
|
|
|
11
|
|
|
Problem Statement |
12
|
|
|
################# |
13
|
|
|
|
14
|
|
|
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae: |
15
|
|
|
|
16
|
|
|
- Triangle: :math:`T_n = \\frac{n(n + 1)}{2} \\mbox{ e.g. } T_n = 1, 3, 6, 10, 15, \\dots` |
17
|
|
|
- Pentagonal: :math:`P_n = \\frac{n(3n - 1)}{2} \\mbox{ e.g. } P_n = 1, 5, 12, 22, 35, \\dots` |
18
|
|
|
- Hexagonal: :math:`H_n = n(2n - 1) \\mbox{ e.g. } H_n = 1, 6, 15, 28, 45, \\dots` |
19
|
|
|
|
20
|
|
|
It can be verified that :math:`T_{285} = P_{165} = H_{143} = 40755`. |
21
|
|
|
|
22
|
|
|
Find the next triangle number that is also pentagonal and hexagonal. |
23
|
|
|
|
24
|
|
|
Solution Discussion |
25
|
|
|
################### |
26
|
|
|
|
27
|
|
|
The first key observation is that every hexagonal number :math:`H_m` is also a triangular number :math:`T_n`: |
|
|
|
|
28
|
|
|
|
29
|
|
|
Let :math:`T_n = \\frac{n \\times (n + 1)}{2}` |
30
|
|
|
:raw-html:`<br />` |
31
|
|
|
Let :math:`H_m = m \\times (2 \\times m - 1)` |
32
|
|
|
:raw-html:`<br />` |
33
|
|
|
Let :math:`T_n = H_m` |
34
|
|
|
:raw-html:`<br />` |
35
|
|
|
:math:`\\Rightarrow \\frac{n \\times (n + 1)}{2} = m \\times (2 \\times m - 1)` |
36
|
|
|
:raw-html:`<br />` |
37
|
|
|
:math:`\\Rightarrow n \\times (n + 1) = (2 \\times m - 1) \\times (2 \\times m)` |
38
|
|
|
:raw-html:`<br />` |
39
|
|
|
Which is satisfied if :math:`n = 2 \\times m - 1` |
40
|
|
|
:raw-html:`<br />` |
41
|
|
|
:math:`\\therefore H_m` is also the triangular number :math:`T_{2 \\times m - 1}` |
42
|
|
|
|
43
|
|
|
Now, we need to find :math:`T_l = P_m = H_n`, but as shown above, we can ignore :math:`T_l` since :math:`H_n` will |
|
|
|
|
44
|
|
|
always be a triangular number (i.e. :math:`H_n = T_{2 * n - 1}`). Really, we need to find the next :math:`P_m = H_n` |
|
|
|
|
45
|
|
|
following :math:`P_{165} = H_{143}`. |
46
|
|
|
|
47
|
|
|
Let :math:`P_m = H_n` |
48
|
|
|
:raw-html:`<br />` |
49
|
|
|
:math:`\\Rightarrow \\frac{m \\times (3 \\times m - 1)}{2} = n \\times (2 \\times n - 1)` |
50
|
|
|
:raw-html:`<br />` |
51
|
|
|
:math:`\\Rightarrow 24 \\times \\bigg( \\frac{m \\times (3 \\times m - 1)}{2} \\bigg)` |
52
|
|
|
:math:`= 24 \\times \\bigg( n \\times (2 \\times n - 1) \\bigg)` |
53
|
|
|
:raw-html:`<br />` |
54
|
|
|
:math:`\\Rightarrow 12 \\times m \\times (3 \\times m - 1) = 24 \\times n \\times (2 \\times n - 1)` |
55
|
|
|
:raw-html:`<br />` |
56
|
|
|
:math:`\\Rightarrow (6 \\times m - 1)^2 - 1 = 3 \\times (4 \\times n - 1)^2 - 3` (by completing the squares) |
|
|
|
|
57
|
|
|
:raw-html:`<br />` |
58
|
|
|
:math:`\\Rightarrow (6 \\times m - 1)^2 - 3 \\times (4 \\times n - 1)^2 = -2` |
59
|
|
|
:raw-html:`<br />` |
60
|
|
|
:math:`\\Rightarrow x^2 - 3 \\times y^2 = -2` (where :math:`x = 6 \\times m - 1, y = 4 \\times n - 1`) |
|
|
|
|
61
|
|
|
|
62
|
|
|
We must find solutions :math:`(x,y)` to this Diophantine equation from which we can infer solutions :math:`(m,n)` s.t. |
|
|
|
|
63
|
|
|
:math:`P_m = H_n`. |
64
|
|
|
|
65
|
|
|
Finally, recall we seek a solution :math:`P_m = H_n` where :math:`m \\gt 165` and :math:`n \\gt 143`. I'll arbitrarily |
|
|
|
|
66
|
|
|
choose :math:`n`. We start the search on ascending values of :math:`n` s.t. :math:`n \\gt 143`. Mapping :math:`n` to |
|
|
|
|
67
|
|
|
:math:`y`, this translates to searching through ascending values of :math:`y` s.t. :math:`y \\gt 4 \\times 143 - 1`. |
|
|
|
|
68
|
|
|
|
69
|
|
|
Solution Implementation |
70
|
|
|
####################### |
71
|
|
|
|
72
|
|
|
.. literalinclude:: ../../solutions/problem45.py |
73
|
|
|
:language: python |
74
|
|
|
:lines: 77- |
75
|
|
|
""" |
76
|
|
|
|
77
|
|
|
from itertools import count |
78
|
|
|
from math import sqrt |
79
|
|
|
|
80
|
|
|
from lib.numbertheory import is_square |
81
|
|
|
from lib.sequence import Pentagonals |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def solve(): |
85
|
|
|
""" Compute the answer to Project Euler's problem #45 """ |
86
|
|
|
|
87
|
|
|
pentagonals = Pentagonals() # used to compute the ultimate answer |
88
|
|
|
|
89
|
|
|
# Determine the start of the search to skip over T_{285} = P_{165} = H_{143} |
90
|
|
|
next_n = 143 + 1 |
91
|
|
|
next_y = 4 * next_n - 1 |
92
|
|
|
|
93
|
|
|
# Solve the Diophantine equations to identify T_{2 * n - 1} = P_m = H_n for some (m,n) |
94
|
|
|
for y in count(next_y): |
|
|
|
|
95
|
|
|
if not is_square(3 * y * y - 2): |
96
|
|
|
continue |
97
|
|
|
x = int(sqrt(3 * y * y - 2)) |
|
|
|
|
98
|
|
|
if (x + 1) % 6 == 0 and (y + 1) % 4 == 0: |
99
|
|
|
m, n = (x + 1) // 6, (y + 1) // 4 |
|
|
|
|
100
|
|
|
return pentagonals[m] |
101
|
|
|
|
102
|
|
|
|
103
|
|
|
expected_answer = 1533776805 |
|
|
|
|
104
|
|
|
|
This check looks for lines that are too long. You can specify the maximum line length.