Passed
Push — master ( 946fbb...c4f58f )
by Arkadiusz
02:50
created

Math/LinearAlgebra/EigenvalueDecomposition.php (2 issues)

Upgrade to new PHP Analysis Engine

These results are based on our legacy PHP analysis, consider migrating to our new PHP analysis engine instead. Learn more

1
<?php
2
3
declare(strict_types=1);
4
5
/**
6
 *	Class to obtain eigenvalues and eigenvectors of a real matrix.
7
 *
8
 *	If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
9
 *	is diagonal and the eigenvector matrix V is orthogonal (i.e.
10
 *	A = V.times(D.times(V.transpose())) and V.times(V.transpose())
11
 *	equals the identity matrix).
12
 *
13
 *	If A is not symmetric, then the eigenvalue matrix D is block diagonal
14
 *	with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
15
 *	lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
16
 *	columns of V represent the eigenvectors in the sense that A*V = V*D,
17
 *	i.e. A.times(V) equals V.times(D).  The matrix V may be badly
18
 *	conditioned, or even singular, so the validity of the equation
19
 *	A = V*D*inverse(V) depends upon V.cond().
20
 *
21
 *	@author  Paul Meagher
22
 *	@license PHP v3.0
23
 *
24
 *	@version 1.1
25
 *
26
 *  Slightly changed to adapt the original code to PHP-ML library
27
 *  @date 2017/04/11
28
 *
29
 *  @author Mustafa Karabulut
30
 */
31
32
namespace Phpml\Math\LinearAlgebra;
33
34
use Phpml\Math\Matrix;
35
36
class EigenvalueDecomposition
37
{
38
    /**
39
     *	Row and column dimension (square matrix).
40
     *
41
     *	@var int
42
     */
43
    private $n;
44
45
    /**
46
     *	Internal symmetry flag.
47
     *
48
     *	@var bool
49
     */
50
    private $symmetric;
51
52
    /**
53
     *	Arrays for internal storage of eigenvalues.
54
     *
55
     *	@var array
56
     */
57
    private $d = [];
58
59
    private $e = [];
60
61
    /**
62
     *	Array for internal storage of eigenvectors.
63
     *
64
     *	@var array
65
     */
66
    private $V = [];
67
68
    /**
69
     *	Array for internal storage of nonsymmetric Hessenberg form.
70
     *
71
     *	@var array
72
     */
73
    private $H = [];
74
75
    /**
76
     *	Working storage for nonsymmetric algorithm.
77
     *
78
     *	@var array
79
     */
80
    private $ort = [];
81
82
    /**
83
     *	Used for complex scalar division.
84
     *
85
     *	@var float
86
     */
87
    private $cdivr;
88
89
    private $cdivi;
90
91
    /**
92
     *	Constructor: Check for symmetry, then construct the eigenvalue decomposition
93
     */
94
    public function __construct(array $Arg)
95
    {
96
        $this->A = $Arg;
97
        $this->n = count($Arg[0]);
98
        $this->symmetric = true;
99
100
        for ($j = 0; ($j < $this->n) && $this->symmetric; ++$j) {
101
            for ($i = 0; ($i < $this->n) & $this->symmetric; ++$i) {
102
                $this->symmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
103
            }
104
        }
105
106
        if ($this->symmetric) {
107
            $this->V = $this->A;
108
            // Tridiagonalize.
109
            $this->tred2();
110
            // Diagonalize.
111
            $this->tql2();
112
        } else {
113
            $this->H = $this->A;
114
            $this->ort = [];
115
            // Reduce to Hessenberg form.
116
            $this->orthes();
117
            // Reduce Hessenberg to real Schur form.
118
            $this->hqr2();
119
        }
120
    }
121
122
    /**
123
     * Return the eigenvector matrix
124
     */
125
    public function getEigenvectors(): array
126
    {
127
        $vectors = $this->V;
128
129
        // Always return the eigenvectors of length 1.0
130
        $vectors = new Matrix($vectors);
131
        $vectors = array_map(function ($vect) {
132
            $sum = 0;
133 View Code Duplication
            for ($i = 0; $i < count($vect); ++$i) {
134
                $sum += $vect[$i] ** 2;
135
            }
136
137
            $sum = sqrt($sum);
138 View Code Duplication
            for ($i = 0; $i < count($vect); ++$i) {
139
                $vect[$i] /= $sum;
140
            }
141
142
            return $vect;
143
        }, $vectors->transpose()->toArray());
144
145
        return $vectors;
146
    }
147
148
    /**
149
     *	Return the real parts of the eigenvalues<br>
150
     *  d = real(diag(D));
151
     */
152
    public function getRealEigenvalues(): array
153
    {
154
        return $this->d;
155
    }
156
157
    /**
158
     *	Return the imaginary parts of the eigenvalues <br>
159
     *  d = imag(diag(D))
160
     */
161
    public function getImagEigenvalues(): array
162
    {
163
        return $this->e;
164
    }
165
166
    /**
167
     *	Return the block diagonal eigenvalue matrix
168
     */
169
    public function getDiagonalEigenvalues(): array
170
    {
171
        $D = [];
172
173
        for ($i = 0; $i < $this->n; ++$i) {
174
            $D[$i] = array_fill(0, $this->n, 0.0);
175
            $D[$i][$i] = $this->d[$i];
176
            if ($this->e[$i] == 0) {
177
                continue;
178
            }
179
180
            $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
181
            $D[$i][$o] = $this->e[$i];
182
        }
183
184
        return $D;
185
    }
186
187
    /**
188
     *	Symmetric Householder reduction to tridiagonal form.
189
     */
190
    private function tred2(): void
191
    {
192
        //  This is derived from the Algol procedures tred2 by
193
        //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
194
        //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
195
        //  Fortran subroutine in EISPACK.
196
        $this->d = $this->V[$this->n - 1];
197
        // Householder reduction to tridiagonal form.
198
        for ($i = $this->n - 1; $i > 0; --$i) {
199
            $i_ = $i - 1;
200
            // Scale to avoid under/overflow.
201
            $h = $scale = 0.0;
202
            $scale += array_sum(array_map('abs', $this->d));
203
            if ($scale == 0.0) {
204
                $this->e[$i] = $this->d[$i_];
205
                $this->d = array_slice($this->V[$i_], 0, $i_);
206
                for ($j = 0; $j < $i; ++$j) {
207
                    $this->V[$j][$i] = $this->V[$i][$j] = 0.0;
208
                }
209
            } else {
210
                // Generate Householder vector.
211
                for ($k = 0; $k < $i; ++$k) {
212
                    $this->d[$k] /= $scale;
213
                    $h += pow($this->d[$k], 2);
214
                }
215
216
                $f = $this->d[$i_];
217
                $g = sqrt($h);
218
                if ($f > 0) {
219
                    $g = -$g;
220
                }
221
222
                $this->e[$i] = $scale * $g;
223
                $h = $h - $f * $g;
224
                $this->d[$i_] = $f - $g;
225
226
                for ($j = 0; $j < $i; ++$j) {
227
                    $this->e[$j] = 0.0;
228
                }
229
230
                // Apply similarity transformation to remaining columns.
231
                for ($j = 0; $j < $i; ++$j) {
232
                    $f = $this->d[$j];
233
                    $this->V[$j][$i] = $f;
234
                    $g = $this->e[$j] + $this->V[$j][$j] * $f;
235
236
                    for ($k = $j + 1; $k <= $i_; ++$k) {
237
                        $g += $this->V[$k][$j] * $this->d[$k];
238
                        $this->e[$k] += $this->V[$k][$j] * $f;
239
                    }
240
241
                    $this->e[$j] = $g;
242
                }
243
244
                $f = 0.0;
245
                if ($h === 0 || $h < 1e-32) {
246
                    $h = 1e-32;
247
                }
248
249
                for ($j = 0; $j < $i; ++$j) {
250
                    $this->e[$j] /= $h;
251
                    $f += $this->e[$j] * $this->d[$j];
252
                }
253
254
                $hh = $f / (2 * $h);
255
                for ($j = 0; $j < $i; ++$j) {
256
                    $this->e[$j] -= $hh * $this->d[$j];
257
                }
258
259
                for ($j = 0; $j < $i; ++$j) {
260
                    $f = $this->d[$j];
261
                    $g = $this->e[$j];
262
                    for ($k = $j; $k <= $i_; ++$k) {
263
                        $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
264
                    }
265
266
                    $this->d[$j] = $this->V[$i - 1][$j];
267
                    $this->V[$i][$j] = 0.0;
268
                }
269
            }
270
271
            $this->d[$i] = $h;
272
        }
273
274
        // Accumulate transformations.
275
        for ($i = 0; $i < $this->n - 1; ++$i) {
276
            $this->V[$this->n - 1][$i] = $this->V[$i][$i];
277
            $this->V[$i][$i] = 1.0;
278
            $h = $this->d[$i + 1];
279
            if ($h != 0.0) {
280
                for ($k = 0; $k <= $i; ++$k) {
281
                    $this->d[$k] = $this->V[$k][$i + 1] / $h;
282
                }
283
284
                for ($j = 0; $j <= $i; ++$j) {
285
                    $g = 0.0;
286
                    for ($k = 0; $k <= $i; ++$k) {
287
                        $g += $this->V[$k][$i + 1] * $this->V[$k][$j];
288
                    }
289
290
                    for ($k = 0; $k <= $i; ++$k) {
291
                        $this->V[$k][$j] -= $g * $this->d[$k];
292
                    }
293
                }
294
            }
295
296
            for ($k = 0; $k <= $i; ++$k) {
297
                $this->V[$k][$i + 1] = 0.0;
298
            }
299
        }
300
301
        $this->d = $this->V[$this->n - 1];
302
        $this->V[$this->n - 1] = array_fill(0, $j, 0.0);
303
        $this->V[$this->n - 1][$this->n - 1] = 1.0;
304
        $this->e[0] = 0.0;
305
    }
306
307
    /**
308
     *	Symmetric tridiagonal QL algorithm.
309
     *
310
     *	This is derived from the Algol procedures tql2, by
311
     *	Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
312
     *	Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
313
     *	Fortran subroutine in EISPACK.
314
     */
315
    private function tql2(): void
316
    {
317
        for ($i = 1; $i < $this->n; ++$i) {
318
            $this->e[$i - 1] = $this->e[$i];
319
        }
320
321
        $this->e[$this->n - 1] = 0.0;
322
        $f = 0.0;
323
        $tst1 = 0.0;
324
        $eps = pow(2.0, -52.0);
325
326
        for ($l = 0; $l < $this->n; ++$l) {
327
            // Find small subdiagonal element
328
            $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
329
            $m = $l;
330
            while ($m < $this->n) {
331
                if (abs($this->e[$m]) <= $eps * $tst1) {
332
                    break;
333
                }
334
335
                ++$m;
336
            }
337
338
            // If m == l, $this->d[l] is an eigenvalue,
339
            // otherwise, iterate.
340
            if ($m > $l) {
341
                $iter = 0;
342
                do {
343
                    // Could check iteration count here.
344
                    $iter += 1;
345
                    // Compute implicit shift
346
                    $g = $this->d[$l];
347
                    $p = ($this->d[$l + 1] - $g) / (2.0 * $this->e[$l]);
348
                    $r = hypot($p, 1.0);
349
                    if ($p < 0) {
350
                        $r *= -1;
351
                    }
352
353
                    $this->d[$l] = $this->e[$l] / ($p + $r);
354
                    $this->d[$l + 1] = $this->e[$l] * ($p + $r);
355
                    $dl1 = $this->d[$l + 1];
356
                    $h = $g - $this->d[$l];
357
                    for ($i = $l + 2; $i < $this->n; ++$i) {
358
                        $this->d[$i] -= $h;
359
                    }
360
361
                    $f += $h;
362
                    // Implicit QL transformation.
363
                    $p = $this->d[$m];
364
                    $c = 1.0;
365
                    $c2 = $c3 = $c;
366
                    $el1 = $this->e[$l + 1];
367
                    $s = $s2 = 0.0;
368
                    for ($i = $m - 1; $i >= $l; --$i) {
369
                        $c3 = $c2;
370
                        $c2 = $c;
371
                        $s2 = $s;
372
                        $g = $c * $this->e[$i];
373
                        $h = $c * $p;
374
                        $r = hypot($p, $this->e[$i]);
375
                        $this->e[$i + 1] = $s * $r;
376
                        $s = $this->e[$i] / $r;
377
                        $c = $p / $r;
378
                        $p = $c * $this->d[$i] - $s * $g;
379
                        $this->d[$i + 1] = $h + $s * ($c * $g + $s * $this->d[$i]);
380
                        // Accumulate transformation.
381
                        for ($k = 0; $k < $this->n; ++$k) {
382
                            $h = $this->V[$k][$i + 1];
383
                            $this->V[$k][$i + 1] = $s * $this->V[$k][$i] + $c * $h;
384
                            $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
385
                        }
386
                    }
387
388
                    $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
389
                    $this->e[$l] = $s * $p;
390
                    $this->d[$l] = $c * $p;
391
                    // Check for convergence.
392
                } while (abs($this->e[$l]) > $eps * $tst1);
393
            }
394
395
            $this->d[$l] = $this->d[$l] + $f;
396
            $this->e[$l] = 0.0;
397
        }
398
399
        // Sort eigenvalues and corresponding vectors.
400
        for ($i = 0; $i < $this->n - 1; ++$i) {
401
            $k = $i;
402
            $p = $this->d[$i];
403
            for ($j = $i + 1; $j < $this->n; ++$j) {
404
                if ($this->d[$j] < $p) {
405
                    $k = $j;
406
                    $p = $this->d[$j];
407
                }
408
            }
409
410
            if ($k != $i) {
411
                $this->d[$k] = $this->d[$i];
412
                $this->d[$i] = $p;
413 View Code Duplication
                for ($j = 0; $j < $this->n; ++$j) {
414
                    $p = $this->V[$j][$i];
415
                    $this->V[$j][$i] = $this->V[$j][$k];
416
                    $this->V[$j][$k] = $p;
417
                }
418
            }
419
        }
420
    }
421
422
    /**
423
     *	Nonsymmetric reduction to Hessenberg form.
424
     *
425
     *	This is derived from the Algol procedures orthes and ortran,
426
     *	by Martin and Wilkinson, Handbook for Auto. Comp.,
427
     *	Vol.ii-Linear Algebra, and the corresponding
428
     *	Fortran subroutines in EISPACK.
429
     */
430
    private function orthes(): void
431
    {
432
        $low = 0;
433
        $high = $this->n - 1;
434
435
        for ($m = $low + 1; $m <= $high - 1; ++$m) {
436
            // Scale column.
437
            $scale = 0.0;
438 View Code Duplication
            for ($i = $m; $i <= $high; ++$i) {
439
                $scale = $scale + abs($this->H[$i][$m - 1]);
440
            }
441
442
            if ($scale != 0.0) {
443
                // Compute Householder transformation.
444
                $h = 0.0;
445
                for ($i = $high; $i >= $m; --$i) {
446
                    $this->ort[$i] = $this->H[$i][$m - 1] / $scale;
447
                    $h += $this->ort[$i] * $this->ort[$i];
448
                }
449
450
                $g = sqrt($h);
451
                if ($this->ort[$m] > 0) {
452
                    $g *= -1;
453
                }
454
455
                $h -= $this->ort[$m] * $g;
456
                $this->ort[$m] -= $g;
457
                // Apply Householder similarity transformation
458
                // H = (I -u * u' / h) * H * (I -u * u') / h)
459 View Code Duplication
                for ($j = $m; $j < $this->n; ++$j) {
460
                    $f = 0.0;
461
                    for ($i = $high; $i >= $m; --$i) {
462
                        $f += $this->ort[$i] * $this->H[$i][$j];
463
                    }
464
465
                    $f /= $h;
466
                    for ($i = $m; $i <= $high; ++$i) {
467
                        $this->H[$i][$j] -= $f * $this->ort[$i];
468
                    }
469
                }
470
471 View Code Duplication
                for ($i = 0; $i <= $high; ++$i) {
472
                    $f = 0.0;
473
                    for ($j = $high; $j >= $m; --$j) {
474
                        $f += $this->ort[$j] * $this->H[$i][$j];
475
                    }
476
477
                    $f = $f / $h;
478
                    for ($j = $m; $j <= $high; ++$j) {
479
                        $this->H[$i][$j] -= $f * $this->ort[$j];
480
                    }
481
                }
482
483
                $this->ort[$m] = $scale * $this->ort[$m];
484
                $this->H[$m][$m - 1] = $scale * $g;
485
            }
486
        }
487
488
        // Accumulate transformations (Algol's ortran).
489
        for ($i = 0; $i < $this->n; ++$i) {
490
            for ($j = 0; $j < $this->n; ++$j) {
491
                $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
492
            }
493
        }
494
495
        for ($m = $high - 1; $m >= $low + 1; --$m) {
496
            if ($this->H[$m][$m - 1] != 0.0) {
497 View Code Duplication
                for ($i = $m + 1; $i <= $high; ++$i) {
498
                    $this->ort[$i] = $this->H[$i][$m - 1];
499
                }
500
501
                for ($j = $m; $j <= $high; ++$j) {
502
                    $g = 0.0;
503
                    for ($i = $m; $i <= $high; ++$i) {
504
                        $g += $this->ort[$i] * $this->V[$i][$j];
505
                    }
506
507
                    // Double division avoids possible underflow
508
                    $g = ($g / $this->ort[$m]) / $this->H[$m][$m - 1];
509
                    for ($i = $m; $i <= $high; ++$i) {
510
                        $this->V[$i][$j] += $g * $this->ort[$i];
511
                    }
512
                }
513
            }
514
        }
515
    }
516
517
    /**
518
     * Performs complex division.
519
     *
520
     * @param int|float $xr
521
     * @param int|float $xi
522
     * @param int|float $yr
523
     * @param int|float $yi
524
     */
525
    private function cdiv($xr, $xi, $yr, $yi): void
526
    {
527
        if (abs($yr) > abs($yi)) {
528
            $r = $yi / $yr;
529
            $d = $yr + $r * $yi;
530
            $this->cdivr = ($xr + $r * $xi) / $d;
531
            $this->cdivi = ($xi - $r * $xr) / $d;
532
        } else {
533
            $r = $yr / $yi;
534
            $d = $yi + $r * $yr;
535
            $this->cdivr = ($r * $xr + $xi) / $d;
536
            $this->cdivi = ($r * $xi - $xr) / $d;
537
        }
538
    }
539
540
    /**
541
     *	Nonsymmetric reduction from Hessenberg to real Schur form.
542
     *
543
     *	Code is derived from the Algol procedure hqr2,
544
     *	by Martin and Wilkinson, Handbook for Auto. Comp.,
545
     *	Vol.ii-Linear Algebra, and the corresponding
546
     *	Fortran subroutine in EISPACK.
547
     */
548
    private function hqr2(): void
549
    {
550
        //  Initialize
551
        $nn = $this->n;
552
        $n = $nn - 1;
553
        $low = 0;
554
        $high = $nn - 1;
555
        $eps = pow(2.0, -52.0);
556
        $exshift = 0.0;
557
        $p = $q = $r = $s = $z = 0;
558
        // Store roots isolated by balanc and compute matrix norm
559
        $norm = 0.0;
560
561
        for ($i = 0; $i < $nn; ++$i) {
562
            if (($i < $low) or ($i > $high)) {
563
                $this->d[$i] = $this->H[$i][$i];
564
                $this->e[$i] = 0.0;
565
            }
566
567
            for ($j = max($i - 1, 0); $j < $nn; ++$j) {
568
                $norm = $norm + abs($this->H[$i][$j]);
569
            }
570
        }
571
572
        // Outer loop over eigenvalue index
573
        $iter = 0;
574
        while ($n >= $low) {
575
            // Look for single small sub-diagonal element
576
            $l = $n;
577
            while ($l > $low) {
578
                $s = abs($this->H[$l - 1][$l - 1]) + abs($this->H[$l][$l]);
579
                if ($s == 0.0) {
580
                    $s = $norm;
581
                }
582
583
                if (abs($this->H[$l][$l - 1]) < $eps * $s) {
584
                    break;
585
                }
586
587
                --$l;
588
            }
589
590
            // Check for convergence
591
            // One root found
592
            if ($l == $n) {
593
                $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
594
                $this->d[$n] = $this->H[$n][$n];
595
                $this->e[$n] = 0.0;
596
                --$n;
597
                $iter = 0;
598
                // Two roots found
599
            } elseif ($l == $n - 1) {
600
                $w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];
601
                $p = ($this->H[$n - 1][$n - 1] - $this->H[$n][$n]) / 2.0;
602
                $q = $p * $p + $w;
603
                $z = sqrt(abs($q));
604
                $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
605
                $this->H[$n - 1][$n - 1] = $this->H[$n - 1][$n - 1] + $exshift;
606
                $x = $this->H[$n][$n];
607
                // Real pair
608
                if ($q >= 0) {
609
                    if ($p >= 0) {
610
                        $z = $p + $z;
611
                    } else {
612
                        $z = $p - $z;
613
                    }
614
615
                    $this->d[$n - 1] = $x + $z;
616
                    $this->d[$n] = $this->d[$n - 1];
617
                    if ($z != 0.0) {
618
                        $this->d[$n] = $x - $w / $z;
619
                    }
620
621
                    $this->e[$n - 1] = 0.0;
622
                    $this->e[$n] = 0.0;
623
                    $x = $this->H[$n][$n - 1];
624
                    $s = abs($x) + abs($z);
625
                    $p = $x / $s;
626
                    $q = $z / $s;
627
                    $r = sqrt($p * $p + $q * $q);
628
                    $p = $p / $r;
629
                    $q = $q / $r;
630
                    // Row modification
631 View Code Duplication
                    for ($j = $n - 1; $j < $nn; ++$j) {
632
                        $z = $this->H[$n - 1][$j];
633
                        $this->H[$n - 1][$j] = $q * $z + $p * $this->H[$n][$j];
634
                        $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
635
                    }
636
637
                    // Column modification
638 View Code Duplication
                    for ($i = 0; $i <= $n; ++$i) {
639
                        $z = $this->H[$i][$n - 1];
640
                        $this->H[$i][$n - 1] = $q * $z + $p * $this->H[$i][$n];
641
                        $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
642
                    }
643
644
                    // Accumulate transformations
645 View Code Duplication
                    for ($i = $low; $i <= $high; ++$i) {
646
                        $z = $this->V[$i][$n - 1];
647
                        $this->V[$i][$n - 1] = $q * $z + $p * $this->V[$i][$n];
648
                        $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
649
                    }
650
651
                    // Complex pair
652
                } else {
653
                    $this->d[$n - 1] = $x + $p;
654
                    $this->d[$n] = $x + $p;
655
                    $this->e[$n - 1] = $z;
656
                    $this->e[$n] = -$z;
657
                }
658
659
                $n = $n - 2;
660
                $iter = 0;
661
                // No convergence yet
662
            } else {
663
                // Form shift
664
                $x = $this->H[$n][$n];
665
                $y = 0.0;
666
                $w = 0.0;
667
                if ($l < $n) {
668
                    $y = $this->H[$n - 1][$n - 1];
669
                    $w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];
670
                }
671
672
                // Wilkinson's original ad hoc shift
673
                if ($iter == 10) {
674
                    $exshift += $x;
675
                    for ($i = $low; $i <= $n; ++$i) {
676
                        $this->H[$i][$i] -= $x;
677
                    }
678
679
                    $s = abs($this->H[$n][$n - 1]) + abs($this->H[$n - 1][$n - 2]);
680
                    $x = $y = 0.75 * $s;
681
                    $w = -0.4375 * $s * $s;
682
                }
683
684
                // MATLAB's new ad hoc shift
685
                if ($iter == 30) {
686
                    $s = ($y - $x) / 2.0;
687
                    $s = $s * $s + $w;
688
                    if ($s > 0) {
689
                        $s = sqrt($s);
690
                        if ($y < $x) {
691
                            $s = -$s;
692
                        }
693
694
                        $s = $x - $w / (($y - $x) / 2.0 + $s);
695
                        for ($i = $low; $i <= $n; ++$i) {
696
                            $this->H[$i][$i] -= $s;
697
                        }
698
699
                        $exshift += $s;
700
                        $x = $y = $w = 0.964;
701
                    }
702
                }
703
704
                // Could check iteration count here.
705
                $iter = $iter + 1;
706
                // Look for two consecutive small sub-diagonal elements
707
                $m = $n - 2;
708
                while ($m >= $l) {
709
                    $z = $this->H[$m][$m];
710
                    $r = $x - $z;
711
                    $s = $y - $z;
712
                    $p = ($r * $s - $w) / $this->H[$m + 1][$m] + $this->H[$m][$m + 1];
713
                    $q = $this->H[$m + 1][$m + 1] - $z - $r - $s;
714
                    $r = $this->H[$m + 2][$m + 1];
715
                    $s = abs($p) + abs($q) + abs($r);
716
                    $p = $p / $s;
717
                    $q = $q / $s;
718
                    $r = $r / $s;
719
                    if ($m == $l) {
720
                        break;
721
                    }
722
723
                    if (abs($this->H[$m][$m - 1]) * (abs($q) + abs($r)) <
724
                        $eps * (abs($p) * (abs($this->H[$m - 1][$m - 1]) + abs($z) + abs($this->H[$m + 1][$m + 1])))) {
725
                        break;
726
                    }
727
728
                    --$m;
729
                }
730
731
                for ($i = $m + 2; $i <= $n; ++$i) {
732
                    $this->H[$i][$i - 2] = 0.0;
733
                    if ($i > $m + 2) {
734
                        $this->H[$i][$i - 3] = 0.0;
735
                    }
736
                }
737
738
                // Double QR step involving rows l:n and columns m:n
739
                for ($k = $m; $k <= $n - 1; ++$k) {
740
                    $notlast = ($k != $n - 1);
741
                    if ($k != $m) {
742
                        $p = $this->H[$k][$k - 1];
743
                        $q = $this->H[$k + 1][$k - 1];
744
                        $r = ($notlast ? $this->H[$k + 2][$k - 1] : 0.0);
745
                        $x = abs($p) + abs($q) + abs($r);
746
                        if ($x != 0.0) {
747
                            $p = $p / $x;
748
                            $q = $q / $x;
749
                            $r = $r / $x;
750
                        }
751
                    }
752
753
                    if ($x == 0.0) {
754
                        break;
755
                    }
756
757
                    $s = sqrt($p * $p + $q * $q + $r * $r);
758
                    if ($p < 0) {
759
                        $s = -$s;
760
                    }
761
762
                    if ($s != 0) {
763
                        if ($k != $m) {
764
                            $this->H[$k][$k - 1] = -$s * $x;
765
                        } elseif ($l != $m) {
766
                            $this->H[$k][$k - 1] = -$this->H[$k][$k - 1];
767
                        }
768
769
                        $p = $p + $s;
770
                        $x = $p / $s;
771
                        $y = $q / $s;
772
                        $z = $r / $s;
773
                        $q = $q / $p;
774
                        $r = $r / $p;
775
                        // Row modification
776 View Code Duplication
                        for ($j = $k; $j < $nn; ++$j) {
777
                            $p = $this->H[$k][$j] + $q * $this->H[$k + 1][$j];
778
                            if ($notlast) {
779
                                $p = $p + $r * $this->H[$k + 2][$j];
780
                                $this->H[$k + 2][$j] = $this->H[$k + 2][$j] - $p * $z;
781
                            }
782
783
                            $this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
784
                            $this->H[$k + 1][$j] = $this->H[$k + 1][$j] - $p * $y;
785
                        }
786
787
                        // Column modification
788 View Code Duplication
                        for ($i = 0; $i <= min($n, $k + 3); ++$i) {
789
                            $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k + 1];
790
                            if ($notlast) {
791
                                $p = $p + $z * $this->H[$i][$k + 2];
792
                                $this->H[$i][$k + 2] = $this->H[$i][$k + 2] - $p * $r;
793
                            }
794
795
                            $this->H[$i][$k] = $this->H[$i][$k] - $p;
796
                            $this->H[$i][$k + 1] = $this->H[$i][$k + 1] - $p * $q;
797
                        }
798
799
                        // Accumulate transformations
800 View Code Duplication
                        for ($i = $low; $i <= $high; ++$i) {
801
                            $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k + 1];
802
                            if ($notlast) {
803
                                $p = $p + $z * $this->V[$i][$k + 2];
804
                                $this->V[$i][$k + 2] = $this->V[$i][$k + 2] - $p * $r;
805
                            }
806
807
                            $this->V[$i][$k] = $this->V[$i][$k] - $p;
808
                            $this->V[$i][$k + 1] = $this->V[$i][$k + 1] - $p * $q;
809
                        }
810
                    }  // ($s != 0)
811
                }  // k loop
812
            }  // check convergence
813
        }  // while ($n >= $low)
814
815
        // Backsubstitute to find vectors of upper triangular form
816
        if ($norm == 0.0) {
817
            return;
818
        }
819
820
        for ($n = $nn - 1; $n >= 0; --$n) {
821
            $p = $this->d[$n];
822
            $q = $this->e[$n];
823
            // Real vector
824
            if ($q == 0) {
825
                $l = $n;
826
                $this->H[$n][$n] = 1.0;
827
                for ($i = $n - 1; $i >= 0; --$i) {
828
                    $w = $this->H[$i][$i] - $p;
829
                    $r = 0.0;
830 View Code Duplication
                    for ($j = $l; $j <= $n; ++$j) {
0 ignored issues
show
This code seems to be duplicated across your project.

Duplicated code is one of the most pungent code smells. If you need to duplicate the same code in three or more different places, we strongly encourage you to look into extracting the code into a single class or operation.

You can also find more detailed suggestions in the “Code” section of your repository.

Loading history...
831
                        $r = $r + $this->H[$i][$j] * $this->H[$j][$n];
832
                    }
833
834
                    if ($this->e[$i] < 0.0) {
835
                        $z = $w;
836
                        $s = $r;
837
                    } else {
838
                        $l = $i;
839
                        if ($this->e[$i] == 0.0) {
840
                            if ($w != 0.0) {
841
                                $this->H[$i][$n] = -$r / $w;
842
                            } else {
843
                                $this->H[$i][$n] = -$r / ($eps * $norm);
844
                            }
845
846
                            // Solve real equations
847
                        } else {
848
                            $x = $this->H[$i][$i + 1];
849
                            $y = $this->H[$i + 1][$i];
850
                            $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
851
                            $t = ($x * $s - $z * $r) / $q;
852
                            $this->H[$i][$n] = $t;
853
                            if (abs($x) > abs($z)) {
854
                                $this->H[$i + 1][$n] = (-$r - $w * $t) / $x;
855
                            } else {
856
                                $this->H[$i + 1][$n] = (-$s - $y * $t) / $z;
857
                            }
858
                        }
859
860
                        // Overflow control
861
                        $t = abs($this->H[$i][$n]);
862
                        if (($eps * $t) * $t > 1) {
863 View Code Duplication
                            for ($j = $i; $j <= $n; ++$j) {
0 ignored issues
show
This code seems to be duplicated across your project.

Duplicated code is one of the most pungent code smells. If you need to duplicate the same code in three or more different places, we strongly encourage you to look into extracting the code into a single class or operation.

You can also find more detailed suggestions in the “Code” section of your repository.

Loading history...
864
                                $this->H[$j][$n] = $this->H[$j][$n] / $t;
865
                            }
866
                        }
867
                    }
868
                }
869
870
                // Complex vector
871
            } elseif ($q < 0) {
872
                $l = $n - 1;
873
                // Last vector component imaginary so matrix is triangular
874
                if (abs($this->H[$n][$n - 1]) > abs($this->H[$n - 1][$n])) {
875
                    $this->H[$n - 1][$n - 1] = $q / $this->H[$n][$n - 1];
876
                    $this->H[$n - 1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n - 1];
877
                } else {
878
                    $this->cdiv(0.0, -$this->H[$n - 1][$n], $this->H[$n - 1][$n - 1] - $p, $q);
879
                    $this->H[$n - 1][$n - 1] = $this->cdivr;
880
                    $this->H[$n - 1][$n] = $this->cdivi;
881
                }
882
883
                $this->H[$n][$n - 1] = 0.0;
884
                $this->H[$n][$n] = 1.0;
885
                for ($i = $n - 2; $i >= 0; --$i) {
886
                    // double ra,sa,vr,vi;
887
                    $ra = 0.0;
888
                    $sa = 0.0;
889
                    for ($j = $l; $j <= $n; ++$j) {
890
                        $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n - 1];
891
                        $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
892
                    }
893
894
                    $w = $this->H[$i][$i] - $p;
895
                    if ($this->e[$i] < 0.0) {
896
                        $z = $w;
897
                        $r = $ra;
898
                        $s = $sa;
899
                    } else {
900
                        $l = $i;
901
                        if ($this->e[$i] == 0) {
902
                            $this->cdiv(-$ra, -$sa, $w, $q);
903
                            $this->H[$i][$n - 1] = $this->cdivr;
904
                            $this->H[$i][$n] = $this->cdivi;
905
                        } else {
906
                            // Solve complex equations
907
                            $x = $this->H[$i][$i + 1];
908
                            $y = $this->H[$i + 1][$i];
909
                            $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
910
                            $vi = ($this->d[$i] - $p) * 2.0 * $q;
911
                            if ($vr == 0.0 & $vi == 0.0) {
912
                                $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
913
                            }
914
915
                            $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
916
                            $this->H[$i][$n - 1] = $this->cdivr;
917
                            $this->H[$i][$n] = $this->cdivi;
918
                            if (abs($x) > (abs($z) + abs($q))) {
919
                                $this->H[$i + 1][$n - 1] = (-$ra - $w * $this->H[$i][$n - 1] + $q * $this->H[$i][$n]) / $x;
920
                                $this->H[$i + 1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n - 1]) / $x;
921
                            } else {
922
                                $this->cdiv(-$r - $y * $this->H[$i][$n - 1], -$s - $y * $this->H[$i][$n], $z, $q);
923
                                $this->H[$i + 1][$n - 1] = $this->cdivr;
924
                                $this->H[$i + 1][$n] = $this->cdivi;
925
                            }
926
                        }
927
928
                        // Overflow control
929
                        $t = max(abs($this->H[$i][$n - 1]), abs($this->H[$i][$n]));
930
                        if (($eps * $t) * $t > 1) {
931
                            for ($j = $i; $j <= $n; ++$j) {
932
                                $this->H[$j][$n - 1] = $this->H[$j][$n - 1] / $t;
933
                                $this->H[$j][$n] = $this->H[$j][$n] / $t;
934
                            }
935
                        }
936
                    } // end else
937
                } // end for
938
            } // end else for complex case
939
        } // end for
940
941
        // Vectors of isolated roots
942
        for ($i = 0; $i < $nn; ++$i) {
943
            if ($i < $low | $i > $high) {
944
                for ($j = $i; $j < $nn; ++$j) {
945
                    $this->V[$i][$j] = $this->H[$i][$j];
946
                }
947
            }
948
        }
949
950
        // Back transformation to get eigenvectors of original matrix
951
        for ($j = $nn - 1; $j >= $low; --$j) {
952
            for ($i = $low; $i <= $high; ++$i) {
953
                $z = 0.0;
954
                for ($k = $low; $k <= min($j, $high); ++$k) {
955
                    $z = $z + $this->V[$i][$k] * $this->H[$k][$j];
956
                }
957
958
                $this->V[$i][$j] = $z;
959
            }
960
        }
961
    }
962
}
963