|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
Example that illustrates how to model startup and shutdown costs attributed |
|
7
|
|
|
to a binary flow. |
|
8
|
|
|
|
|
9
|
|
|
Installation requirements |
|
10
|
|
|
------------------------- |
|
11
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
|
12
|
|
|
|
|
13
|
|
|
pip install oemof.solph[examples] |
|
14
|
|
|
|
|
15
|
|
|
License |
|
16
|
|
|
------- |
|
17
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
|
18
|
|
|
|
|
19
|
|
|
""" |
|
20
|
|
|
import pandas as pd |
|
21
|
|
|
from oemof import solph |
|
22
|
|
|
import matplotlib.pyplot as plt |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
def main(): |
|
26
|
|
|
demand_el = [ |
|
27
|
|
|
0, |
|
28
|
|
|
0, |
|
29
|
|
|
0, |
|
30
|
|
|
1, |
|
31
|
|
|
1, |
|
32
|
|
|
1, |
|
33
|
|
|
0, |
|
34
|
|
|
0, |
|
35
|
|
|
1, |
|
36
|
|
|
1, |
|
37
|
|
|
1, |
|
38
|
|
|
0, |
|
39
|
|
|
0, |
|
40
|
|
|
1, |
|
41
|
|
|
1, |
|
42
|
|
|
1, |
|
43
|
|
|
0, |
|
44
|
|
|
0, |
|
45
|
|
|
1, |
|
46
|
|
|
1, |
|
47
|
|
|
1, |
|
48
|
|
|
1, |
|
49
|
|
|
0, |
|
50
|
|
|
0, |
|
51
|
|
|
] |
|
52
|
|
|
# create an energy system |
|
53
|
|
|
idx = solph.create_time_index(2017, number=len(demand_el)) |
|
54
|
|
|
es = solph.EnergySystem(timeindex=idx, infer_last_interval=False) |
|
55
|
|
|
|
|
56
|
|
|
# power bus and components |
|
57
|
|
|
bel = solph.Bus(label="bel") |
|
58
|
|
|
|
|
59
|
|
|
demand_el = solph.components.Sink( |
|
60
|
|
|
label="demand_el", |
|
61
|
|
|
inputs={bel: solph.Flow(fix=demand_el, nominal_value=10)}, |
|
62
|
|
|
) |
|
63
|
|
|
|
|
64
|
|
|
# pp1 and pp2 are competing to serve overall 12 units load at lowest cost |
|
65
|
|
|
# summed costs for pp1 = 12 * 10 * 10.25 = 1230 |
|
66
|
|
|
# summed costs for pp2 = 4*5 + 4*5 + 12 * 10 * 10 = 1240 |
|
67
|
|
|
# => pp1 serves the load despite of higher variable costs since |
|
68
|
|
|
# the start and shutdown costs of pp2 change its marginal costs |
|
69
|
|
|
pp1 = solph.components.Source( |
|
70
|
|
|
label="power_plant1", |
|
71
|
|
|
outputs={bel: solph.Flow(nominal_value=10, variable_costs=10.25)}, |
|
72
|
|
|
) |
|
73
|
|
|
|
|
74
|
|
|
# shutdown costs only work in combination with a minimum load |
|
75
|
|
|
# since otherwise the status variable is "allowed" to be active i.e. |
|
76
|
|
|
# it permanently has a value of one which does not allow to set the shutdown |
|
77
|
|
|
# variable which is set to one if the status variable changes from one to zero |
|
78
|
|
|
pp2 = solph.components.Source( |
|
79
|
|
|
label="power_plant2", |
|
80
|
|
|
outputs={ |
|
81
|
|
|
bel: solph.Flow( |
|
82
|
|
|
nominal_value=10, |
|
83
|
|
|
min=0.5, |
|
84
|
|
|
max=1.0, |
|
85
|
|
|
variable_costs=10, |
|
86
|
|
|
nonconvex=solph.NonConvex(startup_costs=5, shutdown_costs=5), |
|
87
|
|
|
) |
|
88
|
|
|
}, |
|
89
|
|
|
) |
|
90
|
|
|
es.add(bel, demand_el, pp1, pp2) |
|
91
|
|
|
# create an optimization problem and solve it |
|
92
|
|
|
om = solph.Model(es) |
|
93
|
|
|
|
|
94
|
|
|
# debugging |
|
95
|
|
|
# om.write('problem.lp', io_options={'symbolic_solver_labels': True}) |
|
96
|
|
|
|
|
97
|
|
|
# solve model |
|
98
|
|
|
om.solve(solver="cbc", solve_kwargs={"tee": True}) |
|
99
|
|
|
|
|
100
|
|
|
# create result object |
|
101
|
|
|
results = solph.processing.results(om) |
|
102
|
|
|
|
|
103
|
|
|
# plot electrical bus |
|
104
|
|
|
to_bus = pd.DataFrame( |
|
105
|
|
|
{ |
|
106
|
|
|
k[0].label: v["sequences"]["flow"] |
|
107
|
|
|
for k, v in results.items() |
|
108
|
|
|
if k[1] == bel |
|
109
|
|
|
} |
|
110
|
|
|
) |
|
111
|
|
|
from_bus = pd.DataFrame( |
|
112
|
|
|
{ |
|
113
|
|
|
k[1].label: v["sequences"]["flow"] * -1 |
|
114
|
|
|
for k, v in results.items() |
|
115
|
|
|
if k[0] == bel |
|
116
|
|
|
} |
|
117
|
|
|
) |
|
118
|
|
|
data = pd.concat([from_bus, to_bus], axis=1) |
|
119
|
|
|
ax = data.plot(kind="line", drawstyle="steps-post", grid=True, rot=0) |
|
120
|
|
|
ax.set_xlabel("Hour") |
|
121
|
|
|
ax.set_ylabel("P (MW)") |
|
122
|
|
|
plt.show() |
|
123
|
|
|
|
|
124
|
|
|
|
|
125
|
|
|
if __name__ == "__main__": |
|
126
|
|
|
main() |
|
127
|
|
|
|