|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
|
|
7
|
|
|
A basic example to show how to get the dual variables from the system. Try |
|
8
|
|
|
to understand the plot. |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
Installation requirements |
|
12
|
|
|
------------------------- |
|
13
|
|
|
|
|
14
|
|
|
This example requires the version v0.5.x of oemof.solph: |
|
15
|
|
|
|
|
16
|
|
|
pip install 'oemof.solph[examples]>=0.5,<0.6' |
|
17
|
|
|
|
|
18
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
|
19
|
|
|
|
|
20
|
|
|
SPDX-License-Identifier: MIT |
|
21
|
|
|
""" |
|
22
|
|
|
|
|
23
|
|
|
|
|
24
|
|
|
def main(): |
|
25
|
|
|
# ************************************************************************* |
|
26
|
|
|
# ********** PART 1 - Define and optimise the energy system *************** |
|
27
|
|
|
# ************************************************************************* |
|
28
|
|
|
|
|
29
|
|
|
########################################################################### |
|
30
|
|
|
# imports |
|
31
|
|
|
########################################################################### |
|
32
|
|
|
|
|
33
|
|
|
import pandas as pd |
|
34
|
|
|
from matplotlib import pyplot as plt |
|
35
|
|
|
from oemof.tools import logger |
|
36
|
|
|
|
|
37
|
|
|
from oemof.solph import EnergySystem |
|
38
|
|
|
from oemof.solph import Model |
|
39
|
|
|
from oemof.solph import buses |
|
40
|
|
|
from oemof.solph import components as cmp |
|
41
|
|
|
from oemof.solph import flows |
|
42
|
|
|
from oemof.solph import processing |
|
43
|
|
|
|
|
44
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
|
45
|
|
|
number_of_time_steps = 48 |
|
46
|
|
|
solver_verbose = False # show/hide solver output |
|
47
|
|
|
|
|
48
|
|
|
# initiate the logger (see the API docs for more information) |
|
49
|
|
|
logger.define_logging() |
|
50
|
|
|
|
|
51
|
|
|
date_time_index = pd.date_range( |
|
52
|
|
|
"1/1/2012", periods=number_of_time_steps, freq="H" |
|
53
|
|
|
) |
|
54
|
|
|
|
|
55
|
|
|
energysystem = EnergySystem( |
|
56
|
|
|
timeindex=date_time_index, infer_last_interval=True |
|
57
|
|
|
) |
|
58
|
|
|
|
|
59
|
|
|
demand = [ |
|
60
|
|
|
209, |
|
61
|
|
|
207, |
|
62
|
|
|
200, |
|
63
|
|
|
191, |
|
64
|
|
|
185, |
|
65
|
|
|
180, |
|
66
|
|
|
172, |
|
67
|
|
|
170, |
|
68
|
|
|
171, |
|
69
|
|
|
179, |
|
70
|
|
|
189, |
|
71
|
|
|
201, |
|
72
|
|
|
208, |
|
73
|
|
|
207, |
|
74
|
|
|
205, |
|
75
|
|
|
206, |
|
76
|
|
|
217, |
|
77
|
|
|
232, |
|
78
|
|
|
237, |
|
79
|
|
|
232, |
|
80
|
|
|
224, |
|
81
|
|
|
219, |
|
82
|
|
|
223, |
|
83
|
|
|
213, |
|
84
|
|
|
201, |
|
85
|
|
|
192, |
|
86
|
|
|
187, |
|
87
|
|
|
184, |
|
88
|
|
|
184, |
|
89
|
|
|
182, |
|
90
|
|
|
180, |
|
91
|
|
|
191, |
|
92
|
|
|
207, |
|
93
|
|
|
222, |
|
94
|
|
|
231, |
|
95
|
|
|
238, |
|
96
|
|
|
241, |
|
97
|
|
|
237, |
|
98
|
|
|
234, |
|
99
|
|
|
235, |
|
100
|
|
|
242, |
|
101
|
|
|
264, |
|
102
|
|
|
265, |
|
103
|
|
|
260, |
|
104
|
|
|
245, |
|
105
|
|
|
238, |
|
106
|
|
|
241, |
|
107
|
|
|
231, |
|
108
|
|
|
] |
|
109
|
|
|
pv = [ |
|
110
|
|
|
0.18, |
|
111
|
|
|
0.11, |
|
112
|
|
|
0.05, |
|
113
|
|
|
0.05, |
|
114
|
|
|
0.0, |
|
115
|
|
|
0.0, |
|
116
|
|
|
0.0, |
|
117
|
|
|
0.0, |
|
118
|
|
|
0.0, |
|
119
|
|
|
0.0, |
|
120
|
|
|
0.0, |
|
121
|
|
|
0.0, |
|
122
|
|
|
0.0, |
|
123
|
|
|
0.05, |
|
124
|
|
|
0.07, |
|
125
|
|
|
0.11, |
|
126
|
|
|
0.13, |
|
127
|
|
|
0.15, |
|
128
|
|
|
0.22, |
|
129
|
|
|
0.28, |
|
130
|
|
|
0.33, |
|
131
|
|
|
0.25, |
|
132
|
|
|
0.17, |
|
133
|
|
|
0.09, |
|
134
|
|
|
0.09, |
|
135
|
|
|
0.07, |
|
136
|
|
|
0.05, |
|
137
|
|
|
0.05, |
|
138
|
|
|
0.0, |
|
139
|
|
|
0.0, |
|
140
|
|
|
0.0, |
|
141
|
|
|
0.0, |
|
142
|
|
|
0.0, |
|
143
|
|
|
0.0, |
|
144
|
|
|
0.0, |
|
145
|
|
|
0.0, |
|
146
|
|
|
0.0, |
|
147
|
|
|
0.09, |
|
148
|
|
|
0.21, |
|
149
|
|
|
0.33, |
|
150
|
|
|
0.44, |
|
151
|
|
|
0.54, |
|
152
|
|
|
0.61, |
|
153
|
|
|
0.65, |
|
154
|
|
|
0.67, |
|
155
|
|
|
0.64, |
|
156
|
|
|
0.59, |
|
157
|
|
|
0.52, |
|
158
|
|
|
] |
|
159
|
|
|
|
|
160
|
|
|
########################################################################## |
|
161
|
|
|
# Create oemof object |
|
162
|
|
|
########################################################################## |
|
163
|
|
|
|
|
164
|
|
|
# create natural gas bus |
|
165
|
|
|
bus_gas = buses.Bus(label="natural_gas") |
|
166
|
|
|
|
|
167
|
|
|
# create electricity bus |
|
168
|
|
|
bus_elec = buses.Bus(label="electricity") |
|
169
|
|
|
|
|
170
|
|
|
# adding the buses to the energy system |
|
171
|
|
|
energysystem.add(bus_gas, bus_elec) |
|
172
|
|
|
|
|
173
|
|
|
# create excess component for the electricity bus to allow overproduction |
|
174
|
|
|
energysystem.add( |
|
175
|
|
|
cmp.Sink(label="excess_bel", inputs={bus_elec: flows.Flow()}) |
|
176
|
|
|
) |
|
177
|
|
|
|
|
178
|
|
|
# create source object representing the gas commodity (annual limit) |
|
179
|
|
|
energysystem.add( |
|
180
|
|
|
cmp.Source( |
|
181
|
|
|
label="rgas", |
|
182
|
|
|
outputs={bus_gas: flows.Flow(variable_costs=38)}, |
|
183
|
|
|
) |
|
184
|
|
|
) |
|
185
|
|
|
|
|
186
|
|
|
# create fixed source object representing pv power plants |
|
187
|
|
|
energysystem.add( |
|
188
|
|
|
cmp.Source( |
|
189
|
|
|
label="pv", |
|
190
|
|
|
outputs={bus_elec: flows.Flow(fix=pv, nominal_value=700)}, |
|
191
|
|
|
) |
|
192
|
|
|
) |
|
193
|
|
|
|
|
194
|
|
|
# create simple sink object representing the electrical demand |
|
195
|
|
|
energysystem.add( |
|
196
|
|
|
cmp.Sink( |
|
197
|
|
|
label="demand", |
|
198
|
|
|
inputs={bus_elec: flows.Flow(fix=demand, nominal_value=1)}, |
|
199
|
|
|
) |
|
200
|
|
|
) |
|
201
|
|
|
|
|
202
|
|
|
# create simple transformer object representing a gas power plant |
|
203
|
|
|
energysystem.add( |
|
204
|
|
|
cmp.Transformer( |
|
205
|
|
|
label="pp_gas", |
|
206
|
|
|
inputs={bus_gas: flows.Flow()}, |
|
207
|
|
|
outputs={bus_elec: flows.Flow(nominal_value=400)}, |
|
208
|
|
|
conversion_factors={bus_elec: 0.5}, |
|
209
|
|
|
) |
|
210
|
|
|
) |
|
211
|
|
|
|
|
212
|
|
|
# create storage object representing a battery |
|
213
|
|
|
cap = 400 |
|
214
|
|
|
storage = cmp.GenericStorage( |
|
215
|
|
|
nominal_storage_capacity=cap, |
|
216
|
|
|
label="storage", |
|
217
|
|
|
inputs={bus_elec: flows.Flow(nominal_value=cap / 6)}, |
|
218
|
|
|
outputs={ |
|
219
|
|
|
bus_elec: flows.Flow(nominal_value=cap / 6, variable_costs=0.001) |
|
220
|
|
|
}, |
|
221
|
|
|
loss_rate=0.00, |
|
222
|
|
|
initial_storage_level=0, |
|
223
|
|
|
inflow_conversion_factor=1, |
|
224
|
|
|
outflow_conversion_factor=0.8, |
|
225
|
|
|
) |
|
226
|
|
|
|
|
227
|
|
|
energysystem.add(storage) |
|
228
|
|
|
|
|
229
|
|
|
########################################################################## |
|
230
|
|
|
# Optimise the energy system and plot the results |
|
231
|
|
|
########################################################################## |
|
232
|
|
|
|
|
233
|
|
|
# initialise the operational model |
|
234
|
|
|
model = Model(energysystem) |
|
235
|
|
|
|
|
236
|
|
|
model.receive_duals() |
|
237
|
|
|
|
|
238
|
|
|
# if tee_switch is true solver messages will be displayed |
|
239
|
|
|
model.solve(solver=solver, solve_kwargs={"tee": solver_verbose}) |
|
240
|
|
|
|
|
241
|
|
|
# add results to the energy system to make it possible to store them. |
|
242
|
|
|
results = processing.results(model) |
|
243
|
|
|
|
|
244
|
|
|
flows_to_bus = pd.DataFrame( |
|
245
|
|
|
{ |
|
246
|
|
|
str(k[0].label): v["sequences"]["flow"] |
|
247
|
|
|
for k, v in results.items() |
|
248
|
|
|
if k[1] is not None and k[1] == bus_elec |
|
249
|
|
|
} |
|
250
|
|
|
) |
|
251
|
|
|
flows_from_bus = pd.DataFrame( |
|
252
|
|
|
{ |
|
253
|
|
|
str(k[1].label): v["sequences"]["flow"] |
|
254
|
|
|
for k, v in results.items() |
|
255
|
|
|
if k[1] is not None and k[0] == bus_elec |
|
256
|
|
|
} |
|
257
|
|
|
) |
|
258
|
|
|
|
|
259
|
|
|
storage = pd.DataFrame( |
|
260
|
|
|
{ |
|
261
|
|
|
str(k[0].label): v["sequences"]["storage_content"] |
|
262
|
|
|
for k, v in results.items() |
|
263
|
|
|
if k[1] is None and k[0] == storage |
|
264
|
|
|
} |
|
265
|
|
|
) |
|
266
|
|
|
|
|
267
|
|
|
duals = pd.DataFrame( |
|
268
|
|
|
{ |
|
269
|
|
|
str(k[0].label): v["sequences"]["duals"] |
|
270
|
|
|
for k, v in results.items() |
|
271
|
|
|
if k[1] is None and isinstance(k[0], buses.Bus) |
|
272
|
|
|
} |
|
273
|
|
|
) |
|
274
|
|
|
|
|
275
|
|
|
my_flows = pd.concat( |
|
276
|
|
|
[flows_to_bus, flows_from_bus, storage, duals], |
|
277
|
|
|
keys=["to_bus", "from_bus", "content", "duals"], |
|
278
|
|
|
axis=1, |
|
279
|
|
|
) |
|
280
|
|
|
|
|
281
|
|
|
my_flows.plot() |
|
282
|
|
|
plt.show() |
|
283
|
|
|
|
|
284
|
|
|
|
|
285
|
|
|
if __name__ == "__main__": |
|
286
|
|
|
main() |
|
287
|
|
|
|