|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
solph version of oemof.network.Edge including base constraints |
|
5
|
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
|
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
|
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
|
9
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
|
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
|
11
|
|
|
SPDX-FileCopyrightText: jnnr |
|
12
|
|
|
SPDX-FileCopyrightText: jmloenneberga |
|
13
|
|
|
|
|
14
|
|
|
SPDX-License-Identifier: MIT |
|
15
|
|
|
|
|
16
|
|
|
""" |
|
17
|
|
|
|
|
18
|
|
|
from warnings import warn |
|
19
|
|
|
|
|
20
|
|
|
from oemof.network import network as on |
|
21
|
|
|
from oemof.tools import debugging |
|
22
|
|
|
from pyomo.core import BuildAction |
|
23
|
|
|
from pyomo.core import Constraint |
|
24
|
|
|
from pyomo.core import NonNegativeIntegers |
|
25
|
|
|
from pyomo.core import Set |
|
26
|
|
|
from pyomo.core import Var |
|
27
|
|
|
from pyomo.core.base.block import SimpleBlock |
|
28
|
|
|
|
|
29
|
|
|
from oemof.solph._plumbing import sequence |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class Flow(on.Edge): |
|
33
|
|
|
r"""Defines a flow between two nodes. |
|
34
|
|
|
|
|
35
|
|
|
Keyword arguments are used to set the attributes of this flow. Parameters |
|
36
|
|
|
which are handled specially are noted below. |
|
37
|
|
|
For the case where a parameter can be either a scalar or an iterable, a |
|
38
|
|
|
scalar value will be converted to a sequence containing the scalar value at |
|
39
|
|
|
every index. This sequence is then stored under the paramter's key. |
|
40
|
|
|
|
|
41
|
|
|
Parameters |
|
42
|
|
|
---------- |
|
43
|
|
|
nominal_value : numeric, :math:`P_{nom}` |
|
44
|
|
|
The nominal value of the flow. If this value is set the corresponding |
|
45
|
|
|
optimization variable of the flow object will be bounded by this value |
|
46
|
|
|
multiplied with min(lower bound)/max(upper bound). |
|
47
|
|
|
max : numeric (iterable or scalar), :math:`f_{max}` |
|
48
|
|
|
Normed maximum value of the flow. The flow absolute maximum will be |
|
49
|
|
|
calculated by multiplying :attr:`nominal_value` with :attr:`max` |
|
50
|
|
|
min : numeric (iterable or scalar), :math:`f_{min}` |
|
51
|
|
|
Normed minimum value of the flow (see :attr:`max`). |
|
52
|
|
|
fix : numeric (iterable or scalar), :math:`f_{actual}` |
|
53
|
|
|
Normed fixed value for the flow variable. Will be multiplied with the |
|
54
|
|
|
:attr:`nominal_value` to get the absolute value. If :attr:`fixed` is |
|
55
|
|
|
set to :obj:`True` the flow variable will be fixed to `fix |
|
56
|
|
|
* nominal_value`, i.e. this value is set exogenous. |
|
57
|
|
|
positive_gradient : :obj:`dict`, default: `{'ub': None, 'costs': 0}` |
|
58
|
|
|
A dictionary containing the following two keys: |
|
59
|
|
|
|
|
60
|
|
|
* `'ub'`: numeric (iterable, scalar or None), the normed *upper |
|
61
|
|
|
bound* on the positive difference (`flow[t-1] < flow[t]`) of |
|
62
|
|
|
two consecutive flow values. |
|
63
|
|
|
* `'costs``: numeric (scalar or None), the gradient cost per |
|
64
|
|
|
unit. |
|
65
|
|
|
|
|
66
|
|
|
negative_gradient : :obj:`dict`, default: `{'ub': None, 'costs': 0}` |
|
67
|
|
|
|
|
68
|
|
|
A dictionary containing the following two keys: |
|
69
|
|
|
|
|
70
|
|
|
* `'ub'`: numeric (iterable, scalar or None), the normed *upper |
|
71
|
|
|
bound* on the negative difference (`flow[t-1] > flow[t]`) of |
|
72
|
|
|
two consecutive flow values. |
|
73
|
|
|
* `'costs``: numeric (scalar or None), the gradient cost per |
|
74
|
|
|
unit. |
|
75
|
|
|
|
|
76
|
|
|
max_capacity_factor : numeric, :math:`f_{sum,max}` |
|
77
|
|
|
Specific maximum value summed over all timesteps. Will be multiplied |
|
78
|
|
|
with the nominal_value to get the absolute limit. |
|
79
|
|
|
min_capacity_factor : numeric, :math:`f_{sum,min}` |
|
80
|
|
|
see above |
|
81
|
|
|
variable_costs : numeric (iterable or scalar) |
|
82
|
|
|
The costs associated with one unit of the flow. If this is set the |
|
83
|
|
|
costs will be added to the objective expression of the optimization |
|
84
|
|
|
problem. |
|
85
|
|
|
fixed : boolean |
|
86
|
|
|
Boolean value indicating if a flow is fixed during the optimization |
|
87
|
|
|
problem to its ex-ante set value. Used in combination with the |
|
88
|
|
|
:attr:`fix`. |
|
89
|
|
|
investment : :class:`Investment <oemof.solph.options.Investment>` |
|
90
|
|
|
Object indicating if a nominal_value of the flow is determined by |
|
91
|
|
|
the optimization problem. Note: This will refer all attributes to an |
|
92
|
|
|
investment variable instead of to the nominal_value. The nominal_value |
|
93
|
|
|
should not be set (or set to None) if an investment object is used. |
|
94
|
|
|
nonconvex : :class:`NonConvex <oemof.solph.options.NonConvex>` |
|
95
|
|
|
If a nonconvex flow object is added here, the flow constraints will |
|
96
|
|
|
be altered significantly as the mathematical model for the flow |
|
97
|
|
|
will be different, i.e. constraint etc. from |
|
98
|
|
|
:class:`NonConvexFlowBlock <oemof.solph.blocks.NonConvexFlowBlock>` |
|
99
|
|
|
will be used instead of |
|
100
|
|
|
:class:`FlowBlock <oemof.solph.blocks.FlowBlock>`. |
|
101
|
|
|
Note: at the moment this does not work if the investment attribute is |
|
102
|
|
|
set . |
|
103
|
|
|
|
|
104
|
|
|
Notes |
|
105
|
|
|
----- |
|
106
|
|
|
The following sets, variables, constraints and objective parts are created |
|
107
|
|
|
* :py:class:`~oemof.solph..flows.flow.FlowBlock` |
|
108
|
|
|
* :py:class:`~oemof.solph..flows.investment_flow.InvestmentFlowBlock` |
|
109
|
|
|
(additionally if Investment object is present) |
|
110
|
|
|
* :py:class:`~oemof.solph..flows.non_convex_flow.NonConvexFlowBlock` |
|
111
|
|
|
(If nonconvex object is present, CAUTION: replaces |
|
112
|
|
|
:py:class:`~oemof.solph.flows.flow.FlowBlock` |
|
113
|
|
|
class and a MILP will be build) |
|
114
|
|
|
|
|
115
|
|
|
Examples |
|
116
|
|
|
-------- |
|
117
|
|
|
Creating a fixed flow object: |
|
118
|
|
|
|
|
119
|
|
|
>>> f = Flow(fix=[10, 4, 4], variable_costs=5) |
|
120
|
|
|
>>> f.variable_costs[2] |
|
121
|
|
|
5 |
|
122
|
|
|
>>> f.fix[2] |
|
123
|
|
|
4 |
|
124
|
|
|
|
|
125
|
|
|
Creating a flow object with time-depended lower and upper bounds: |
|
126
|
|
|
|
|
127
|
|
|
>>> f1 = Flow(min=[0.2, 0.3], max=0.99, nominal_value=100) |
|
128
|
|
|
>>> f1.max[1] |
|
129
|
|
|
0.99 |
|
130
|
|
|
""" |
|
131
|
|
|
|
|
132
|
|
|
def __init__(self, **kwargs): |
|
133
|
|
|
# TODO: Check if we can inherit from pyomo.core.base.var _VarData |
|
134
|
|
|
# then we need to create the var object with |
|
135
|
|
|
# pyomo.core.base.IndexedVarWithDomain before any FlowBlock is created. |
|
136
|
|
|
# E.g. create the variable in the energy system and populate with |
|
137
|
|
|
# information afterwards when creating objects. |
|
138
|
|
|
|
|
139
|
|
|
super().__init__() |
|
140
|
|
|
|
|
141
|
|
|
scalars = [ |
|
142
|
|
|
"nominal_value", |
|
143
|
|
|
"max_capacity_factor", |
|
144
|
|
|
"min_capacity_factor", |
|
145
|
|
|
"investment", |
|
146
|
|
|
"nonconvex", |
|
147
|
|
|
"integer", |
|
148
|
|
|
] |
|
149
|
|
|
sequences = ["fix", "variable_costs", "min", "max"] |
|
150
|
|
|
dictionaries = ["positive_gradient", "negative_gradient"] |
|
151
|
|
|
defaults = { |
|
152
|
|
|
"variable_costs": 0, |
|
153
|
|
|
"positive_gradient": {"ub": None, "costs": 0}, |
|
154
|
|
|
"negative_gradient": {"ub": None, "costs": 0}, |
|
155
|
|
|
} |
|
156
|
|
|
keys = [k for k in kwargs if k != "label"] |
|
157
|
|
|
|
|
158
|
|
|
if "fixed_costs" in keys: |
|
159
|
|
|
raise AttributeError( |
|
160
|
|
|
"The `fixed_costs` attribute has been removed" " with v0.2!" |
|
161
|
|
|
) |
|
162
|
|
|
|
|
163
|
|
|
if "actual_value" in keys: |
|
164
|
|
|
raise AttributeError( |
|
165
|
|
|
"The `actual_value` attribute has been renamed" |
|
166
|
|
|
" to `fix` with v0.4. The attribute `fixed` is" |
|
167
|
|
|
" set to True automatically when passing `fix`." |
|
168
|
|
|
) |
|
169
|
|
|
|
|
170
|
|
|
if "fixed" in keys: |
|
171
|
|
|
msg = ( |
|
172
|
|
|
"The `fixed` attribute is deprecated.\nIf you have defined " |
|
173
|
|
|
"the `fix` attribute the flow variable will be fixed.\n" |
|
174
|
|
|
"The `fixed` attribute does not change anything." |
|
175
|
|
|
) |
|
176
|
|
|
warn(msg, debugging.SuspiciousUsageWarning) |
|
177
|
|
|
|
|
178
|
|
|
# It is not allowed to define min or max if fix is defined. |
|
179
|
|
|
if kwargs.get("fix") is not None and ( |
|
180
|
|
|
kwargs.get("min") is not None or kwargs.get("max") is not None |
|
181
|
|
|
): |
|
182
|
|
|
raise AttributeError( |
|
183
|
|
|
"It is not allowed to define min/max if fix is defined." |
|
184
|
|
|
) |
|
185
|
|
|
|
|
186
|
|
|
# Set default value for min and max |
|
187
|
|
|
if kwargs.get("min") is None: |
|
188
|
|
|
if "bidirectional" in keys: |
|
189
|
|
|
defaults["min"] = -1 |
|
190
|
|
|
else: |
|
191
|
|
|
defaults["min"] = 0 |
|
192
|
|
|
if kwargs.get("max") is None: |
|
193
|
|
|
defaults["max"] = 1 |
|
194
|
|
|
|
|
195
|
|
|
for attribute in set(scalars + sequences + dictionaries + keys): |
|
196
|
|
|
value = kwargs.get(attribute, defaults.get(attribute)) |
|
197
|
|
View Code Duplication |
if attribute in dictionaries: |
|
|
|
|
|
|
198
|
|
|
setattr( |
|
199
|
|
|
self, |
|
200
|
|
|
attribute, |
|
201
|
|
|
{"ub": sequence(value["ub"]), "costs": value["costs"]}, |
|
202
|
|
|
) |
|
203
|
|
|
|
|
204
|
|
|
else: |
|
205
|
|
|
setattr( |
|
206
|
|
|
self, |
|
207
|
|
|
attribute, |
|
208
|
|
|
sequence(value) if attribute in sequences else value, |
|
209
|
|
|
) |
|
210
|
|
|
|
|
211
|
|
|
# Checking for impossible attribute combinations |
|
212
|
|
|
if self.investment and self.nominal_value is not None: |
|
213
|
|
|
raise ValueError( |
|
214
|
|
|
"Using the investment object the nominal_value" |
|
215
|
|
|
" has to be set to None." |
|
216
|
|
|
) |
|
217
|
|
|
if self.investment and self.nonconvex: |
|
218
|
|
|
raise ValueError( |
|
219
|
|
|
"Investment flows cannot be combined with " |
|
220
|
|
|
+ "nonconvex flows!" |
|
221
|
|
|
) |
|
222
|
|
|
|
|
223
|
|
|
# Checking for impossible gradient combinations |
|
224
|
|
View Code Duplication |
if self.nonconvex: |
|
|
|
|
|
|
225
|
|
|
if self.nonconvex.positive_gradient["ub"][0] is not None and ( |
|
226
|
|
|
self.positive_gradient["ub"][0] is not None |
|
227
|
|
|
or self.negative_gradient["ub"][0] is not None |
|
228
|
|
|
): |
|
229
|
|
|
raise ValueError( |
|
230
|
|
|
"You specified a positive gradient in your nonconvex " |
|
231
|
|
|
"option. This cannot be combined with a positive or a " |
|
232
|
|
|
"negative gradient for a standard flow!" |
|
233
|
|
|
) |
|
234
|
|
|
|
|
235
|
|
View Code Duplication |
if self.nonconvex: |
|
|
|
|
|
|
236
|
|
|
if self.nonconvex.negative_gradient["ub"][0] is not None and ( |
|
237
|
|
|
self.positive_gradient["ub"][0] is not None |
|
238
|
|
|
or self.negative_gradient["ub"][0] is not None |
|
239
|
|
|
): |
|
240
|
|
|
raise ValueError( |
|
241
|
|
|
"You specified a negative gradient in your nonconvex " |
|
242
|
|
|
"option. This cannot be combined with a positive or a " |
|
243
|
|
|
"negative gradient for a standard flow!" |
|
244
|
|
|
) |
|
245
|
|
|
|
|
246
|
|
|
|
|
247
|
|
|
class FlowBlock(SimpleBlock): |
|
248
|
|
|
r""" FlowBlock block with definitions for standard flows. |
|
249
|
|
|
|
|
250
|
|
|
**The following variables are created**: |
|
251
|
|
|
|
|
252
|
|
|
negative_gradient : |
|
253
|
|
|
Difference of a flow in consecutive timesteps if flow is reduced |
|
254
|
|
|
indexed by NEGATIVE_GRADIENT_FLOWS, TIMESTEPS. |
|
255
|
|
|
|
|
256
|
|
|
positive_gradient : |
|
257
|
|
|
Difference of a flow in consecutive timesteps if flow is increased |
|
258
|
|
|
indexed by NEGATIVE_GRADIENT_FLOWS, TIMESTEPS. |
|
259
|
|
|
|
|
260
|
|
|
**The following sets are created:** (-> see basic sets at :class:`.Model` ) |
|
261
|
|
|
|
|
262
|
|
|
MAX_CAPACITY_FACTOR_FLOWS |
|
263
|
|
|
A set of flows with the attribute :attr:`max_capacity_factor` being not |
|
264
|
|
|
None. |
|
265
|
|
|
MIN_CAPACITY_FACTOR_FLOWS |
|
266
|
|
|
A set of flows with the attribute :attr:`min_capacity_factor` being not |
|
267
|
|
|
None. |
|
268
|
|
|
NEGATIVE_GRADIENT_FLOWS |
|
269
|
|
|
A set of flows with the attribute :attr:`negative_gradient` being not |
|
270
|
|
|
None. |
|
271
|
|
|
POSITIVE_GRADIENT_FLOWS |
|
272
|
|
|
A set of flows with the attribute :attr:`positive_gradient` being not |
|
273
|
|
|
None |
|
274
|
|
|
INTEGER_FLOWS |
|
275
|
|
|
A set of flows where the attribute :attr:`integer` is True (forces flow |
|
276
|
|
|
to only take integer values) |
|
277
|
|
|
|
|
278
|
|
|
**The following constraints are build:** |
|
279
|
|
|
|
|
280
|
|
|
FlowBlock max sum :attr:`om.FlowBlock.max_capacity_factor[i, o]` |
|
281
|
|
|
.. math:: |
|
282
|
|
|
\sum_t flow(i, o, t) \cdot \tau |
|
283
|
|
|
\leq summed\_max(i, o) \cdot nominal\_value(i, o), \\ |
|
284
|
|
|
\forall (i, o) \in \textrm{SUMMED\_MAX\_FLOWS}. |
|
285
|
|
|
|
|
286
|
|
|
FlowBlock min sum :attr:`om.FlowBlock.min_capacity_factor[i, o]` |
|
287
|
|
|
.. math:: |
|
288
|
|
|
\sum_t flow(i, o, t) \cdot \tau |
|
289
|
|
|
\geq summed\_min(i, o) \cdot nominal\_value(i, o), \\ |
|
290
|
|
|
\forall (i, o) \in \textrm{SUMMED\_MIN\_FLOWS}. |
|
291
|
|
|
|
|
292
|
|
|
Negative gradient constraint |
|
293
|
|
|
:attr:`om.FlowBlock.negative_gradient_constr[i, o]`: |
|
294
|
|
|
.. math:: |
|
295
|
|
|
flow(i, o, t-1) - flow(i, o, t) \geq \ |
|
296
|
|
|
negative\_gradient(i, o, t), \\ |
|
297
|
|
|
\forall (i, o) \in \textrm{NEGATIVE\_GRADIENT\_FLOWS}, \\ |
|
298
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
|
299
|
|
|
|
|
300
|
|
|
Positive gradient constraint |
|
301
|
|
|
:attr:`om.FlowBlock.positive_gradient_constr[i, o]`: |
|
302
|
|
|
.. math:: flow(i, o, t) - flow(i, o, t-1) \geq \ |
|
303
|
|
|
positive\__gradient(i, o, t), \\ |
|
304
|
|
|
\forall (i, o) \in \textrm{POSITIVE\_GRADIENT\_FLOWS}, \\ |
|
305
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
|
306
|
|
|
|
|
307
|
|
|
**The following parts of the objective function are created:** |
|
308
|
|
|
|
|
309
|
|
|
If :attr:`variable_costs` are set by the user: |
|
310
|
|
|
.. math:: |
|
311
|
|
|
\sum_{(i,o)} \sum_t flow(i, o, t) \cdot variable\_costs(i, o, t) |
|
312
|
|
|
|
|
313
|
|
|
The expression can be accessed by :attr:`om.FlowBlock.variable_costs` and |
|
314
|
|
|
their value after optimization by :meth:`om.FlowBlock.variable_costs()` . |
|
315
|
|
|
|
|
316
|
|
|
""" |
|
317
|
|
|
|
|
318
|
|
|
def __init__(self, *args, **kwargs): |
|
319
|
|
|
super().__init__(*args, **kwargs) |
|
320
|
|
|
|
|
321
|
|
|
def _create(self, group=None): |
|
322
|
|
|
r"""Creates sets, variables and constraints for all standard flows. |
|
323
|
|
|
|
|
324
|
|
|
Parameters |
|
325
|
|
|
---------- |
|
326
|
|
|
group : list |
|
327
|
|
|
List containing tuples containing flow (f) objects and the |
|
328
|
|
|
associated source (s) and target (t) |
|
329
|
|
|
of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
|
330
|
|
|
""" |
|
331
|
|
|
if group is None: |
|
332
|
|
|
return None |
|
333
|
|
|
|
|
334
|
|
|
m = self.parent_block() |
|
335
|
|
|
|
|
336
|
|
|
# ########################## SETS ################################# |
|
337
|
|
|
# set for all flows with an global limit on the flow over time |
|
338
|
|
|
self.MAX_CAPACITY_FACTOR_FLOWS = Set( |
|
339
|
|
|
initialize=[ |
|
340
|
|
|
(g[0], g[1]) |
|
341
|
|
|
for g in group |
|
342
|
|
|
if g[2].max_capacity_factor is not None |
|
343
|
|
|
and g[2].nominal_value is not None |
|
344
|
|
|
] |
|
345
|
|
|
) |
|
346
|
|
|
|
|
347
|
|
|
self.MIN_CAPACITY_FACTOR_FLOWS = Set( |
|
348
|
|
|
initialize=[ |
|
349
|
|
|
(g[0], g[1]) |
|
350
|
|
|
for g in group |
|
351
|
|
|
if g[2].min_capacity_factor is not None |
|
352
|
|
|
and g[2].nominal_value is not None |
|
353
|
|
|
] |
|
354
|
|
|
) |
|
355
|
|
|
|
|
356
|
|
|
self.NEGATIVE_GRADIENT_FLOWS = Set( |
|
357
|
|
|
initialize=[ |
|
358
|
|
|
(g[0], g[1]) |
|
359
|
|
|
for g in group |
|
360
|
|
|
if g[2].negative_gradient["ub"][0] is not None |
|
361
|
|
|
] |
|
362
|
|
|
) |
|
363
|
|
|
|
|
364
|
|
|
self.POSITIVE_GRADIENT_FLOWS = Set( |
|
365
|
|
|
initialize=[ |
|
366
|
|
|
(g[0], g[1]) |
|
367
|
|
|
for g in group |
|
368
|
|
|
if g[2].positive_gradient["ub"][0] is not None |
|
369
|
|
|
] |
|
370
|
|
|
) |
|
371
|
|
|
|
|
372
|
|
|
self.INTEGER_FLOWS = Set( |
|
373
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].integer] |
|
374
|
|
|
) |
|
375
|
|
|
# ######################### Variables ################################ |
|
376
|
|
|
|
|
377
|
|
|
self.positive_gradient = Var(self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS) |
|
378
|
|
|
|
|
379
|
|
|
self.negative_gradient = Var(self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS) |
|
380
|
|
|
|
|
381
|
|
|
self.integer_flow = Var( |
|
382
|
|
|
self.INTEGER_FLOWS, m.TIMESTEPS, within=NonNegativeIntegers |
|
383
|
|
|
) |
|
384
|
|
|
# set upper bound of gradient variable |
|
385
|
|
|
for i, o, f in group: |
|
386
|
|
|
if m.flows[i, o].positive_gradient["ub"][0] is not None: |
|
387
|
|
|
for t in m.TIMESTEPS: |
|
388
|
|
|
self.positive_gradient[i, o, t].setub( |
|
389
|
|
|
f.positive_gradient["ub"][t] * f.nominal_value |
|
390
|
|
|
) |
|
391
|
|
|
if m.flows[i, o].negative_gradient["ub"][0] is not None: |
|
392
|
|
|
for t in m.TIMESTEPS: |
|
393
|
|
|
self.negative_gradient[i, o, t].setub( |
|
394
|
|
|
f.negative_gradient["ub"][t] * f.nominal_value |
|
395
|
|
|
) |
|
396
|
|
|
|
|
397
|
|
|
# ######################### CONSTRAINTS ############################### |
|
398
|
|
|
|
|
399
|
|
|
def _flow_max_capacity_factor_rule(model): |
|
400
|
|
|
"""Rule definition for build action of max. sum flow constraint.""" |
|
401
|
|
|
for inp, out in self.MAX_CAPACITY_FACTOR_FLOWS: |
|
402
|
|
|
lhs = sum( |
|
403
|
|
|
m.flow[inp, out, ts] * m.timeincrement[ts] |
|
|
|
|
|
|
404
|
|
|
for ts in m.TIMESTEPS |
|
405
|
|
|
) |
|
406
|
|
|
rhs = ( |
|
407
|
|
|
m.flows[inp, out].max_capacity_factor |
|
408
|
|
|
* m.flows[inp, out].nominal_value |
|
409
|
|
|
) |
|
410
|
|
|
self.max_capacity_factor.add((inp, out), lhs <= rhs) |
|
411
|
|
|
|
|
412
|
|
|
self.max_capacity_factor = Constraint( |
|
413
|
|
|
self.MAX_CAPACITY_FACTOR_FLOWS, noruleinit=True |
|
414
|
|
|
) |
|
415
|
|
|
self.max_capacity_factor_build = BuildAction( |
|
416
|
|
|
rule=_flow_max_capacity_factor_rule |
|
417
|
|
|
) |
|
418
|
|
|
|
|
419
|
|
|
def _flow_min_capacity_factor_rule(model): |
|
420
|
|
|
"""Rule definition for build action of min. sum flow constraint.""" |
|
421
|
|
|
for inp, out in self.MIN_CAPACITY_FACTOR_FLOWS: |
|
422
|
|
|
lhs = sum( |
|
423
|
|
|
m.flow[inp, out, ts] * m.timeincrement[ts] |
|
|
|
|
|
|
424
|
|
|
for ts in m.TIMESTEPS |
|
425
|
|
|
) |
|
426
|
|
|
rhs = ( |
|
427
|
|
|
m.flows[inp, out].min_capacity_factor |
|
428
|
|
|
* m.flows[inp, out].nominal_value |
|
429
|
|
|
) |
|
430
|
|
|
self.min_capacity_factor.add((inp, out), lhs >= rhs) |
|
431
|
|
|
|
|
432
|
|
|
self.min_capacity_factor = Constraint( |
|
433
|
|
|
self.MIN_CAPACITY_FACTOR_FLOWS, noruleinit=True |
|
434
|
|
|
) |
|
435
|
|
|
self.min_capacity_factor_build = BuildAction( |
|
436
|
|
|
rule=_flow_min_capacity_factor_rule |
|
437
|
|
|
) |
|
438
|
|
|
|
|
439
|
|
|
def _positive_gradient_flow_rule(model): |
|
440
|
|
|
"""Rule definition for positive gradient constraint.""" |
|
441
|
|
|
for inp, out in self.POSITIVE_GRADIENT_FLOWS: |
|
442
|
|
|
for ts in m.TIMESTEPS: |
|
|
|
|
|
|
443
|
|
|
if ts > 0: |
|
444
|
|
|
lhs = m.flow[inp, out, ts] - m.flow[inp, out, ts - 1] |
|
445
|
|
|
rhs = self.positive_gradient[inp, out, ts] |
|
446
|
|
|
self.positive_gradient_constr.add( |
|
447
|
|
|
(inp, out, ts), lhs <= rhs |
|
448
|
|
|
) |
|
449
|
|
|
else: |
|
450
|
|
|
pass # return(Constraint.Skip) |
|
451
|
|
|
|
|
452
|
|
|
self.positive_gradient_constr = Constraint( |
|
453
|
|
|
self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
|
454
|
|
|
) |
|
455
|
|
|
self.positive_gradient_build = BuildAction( |
|
456
|
|
|
rule=_positive_gradient_flow_rule |
|
457
|
|
|
) |
|
458
|
|
|
|
|
459
|
|
|
def _negative_gradient_flow_rule(model): |
|
460
|
|
|
"""Rule definition for negative gradient constraint.""" |
|
461
|
|
|
for inp, out in self.NEGATIVE_GRADIENT_FLOWS: |
|
462
|
|
|
for ts in m.TIMESTEPS: |
|
|
|
|
|
|
463
|
|
|
if ts > 0: |
|
464
|
|
|
lhs = m.flow[inp, out, ts - 1] - m.flow[inp, out, ts] |
|
465
|
|
|
rhs = self.negative_gradient[inp, out, ts] |
|
466
|
|
|
self.negative_gradient_constr.add( |
|
467
|
|
|
(inp, out, ts), lhs <= rhs |
|
468
|
|
|
) |
|
469
|
|
|
else: |
|
470
|
|
|
pass # return(Constraint.Skip) |
|
471
|
|
|
|
|
472
|
|
|
self.negative_gradient_constr = Constraint( |
|
473
|
|
|
self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
|
474
|
|
|
) |
|
475
|
|
|
self.negative_gradient_build = BuildAction( |
|
476
|
|
|
rule=_negative_gradient_flow_rule |
|
477
|
|
|
) |
|
478
|
|
|
|
|
479
|
|
|
def _integer_flow_rule(block, ii, oi, ti): |
|
480
|
|
|
"""Force flow variable to NonNegativeInteger values.""" |
|
481
|
|
|
return self.integer_flow[ii, oi, ti] == m.flow[ii, oi, ti] |
|
|
|
|
|
|
482
|
|
|
|
|
483
|
|
|
self.integer_flow_constr = Constraint( |
|
484
|
|
|
self.INTEGER_FLOWS, m.TIMESTEPS, rule=_integer_flow_rule |
|
485
|
|
|
) |
|
486
|
|
|
|
|
487
|
|
|
def _objective_expression(self): |
|
488
|
|
|
r"""Objective expression for all standard flows with fixed costs |
|
489
|
|
|
and variable costs. |
|
490
|
|
|
""" |
|
491
|
|
|
m = self.parent_block() |
|
492
|
|
|
|
|
493
|
|
|
variable_costs = 0 |
|
494
|
|
|
gradient_costs = 0 |
|
495
|
|
|
|
|
496
|
|
|
for i, o in m.FLOWS: |
|
497
|
|
|
if m.flows[i, o].variable_costs[0] is not None: |
|
498
|
|
|
for t in m.TIMESTEPS: |
|
499
|
|
|
variable_costs += ( |
|
500
|
|
|
m.flow[i, o, t] |
|
501
|
|
|
* m.objective_weighting[t] |
|
502
|
|
|
* m.flows[i, o].variable_costs[t] |
|
503
|
|
|
) |
|
504
|
|
|
|
|
505
|
|
|
if m.flows[i, o].positive_gradient["ub"][0] is not None: |
|
506
|
|
|
for t in m.TIMESTEPS: |
|
507
|
|
|
gradient_costs += ( |
|
508
|
|
|
self.positive_gradient[i, o, t] |
|
509
|
|
|
* m.flows[i, o].positive_gradient["costs"] |
|
510
|
|
|
) |
|
511
|
|
|
|
|
512
|
|
|
if m.flows[i, o].negative_gradient["ub"][0] is not None: |
|
513
|
|
|
for t in m.TIMESTEPS: |
|
514
|
|
|
gradient_costs += ( |
|
515
|
|
|
self.negative_gradient[i, o, t] |
|
516
|
|
|
* m.flows[i, o].negative_gradient["costs"] |
|
517
|
|
|
) |
|
518
|
|
|
|
|
519
|
|
|
return variable_costs + gradient_costs |
|
520
|
|
|
|