|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" This example shows how to create an energysystem with oemof objects and |
|
4
|
|
|
solve it with the solph module. |
|
5
|
|
|
|
|
6
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
|
7
|
|
|
by the contributors recorded in the version control history of the file, |
|
8
|
|
|
available from its original location |
|
9
|
|
|
oemof/tests/test_scripts/test_solph/test_simple_dispatch/test_simple_dispatch.py |
|
10
|
|
|
|
|
11
|
|
|
SPDX-License-Identifier: MIT |
|
12
|
|
|
""" |
|
13
|
|
|
|
|
14
|
|
|
from nose.tools import eq_ |
|
15
|
|
|
from oemof.network.network import Node |
|
16
|
|
|
|
|
17
|
|
|
from oemof.solph import EnergySystem |
|
18
|
|
|
from oemof.solph import Model |
|
19
|
|
|
from oemof.solph import processing |
|
20
|
|
|
from oemof.solph import views |
|
21
|
|
|
from oemof.solph.buses import Bus |
|
22
|
|
|
from oemof.solph.components import Sink |
|
23
|
|
|
from oemof.solph.components import Source |
|
24
|
|
|
from oemof.solph.components import Transformer |
|
25
|
|
|
from oemof.solph.flows import Flow |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
View Code Duplication |
def test_dispatch_one_time_step(solver="cbc"): |
|
|
|
|
|
|
29
|
|
|
"""Create an energy system and optimize the dispatch at least costs.""" |
|
30
|
|
|
|
|
31
|
|
|
# ######################### create energysystem components ################ |
|
32
|
|
|
Node.registry = None |
|
33
|
|
|
|
|
34
|
|
|
# resource buses |
|
35
|
|
|
bgas = Bus(label="gas", balanced=False) |
|
36
|
|
|
|
|
37
|
|
|
# electricity and heat |
|
38
|
|
|
bel = Bus(label="b_el") |
|
39
|
|
|
bth = Bus(label="b_th") |
|
40
|
|
|
|
|
41
|
|
|
# an excess and a shortage variable can help to avoid infeasible problems |
|
42
|
|
|
excess_el = Sink(label="excess_el", inputs={bel: Flow()}) |
|
43
|
|
|
|
|
44
|
|
|
# sources |
|
45
|
|
|
wind = Source( |
|
46
|
|
|
label="wind", outputs={bel: Flow(fix=0.5, nominal_value=66.3)} |
|
47
|
|
|
) |
|
48
|
|
|
|
|
49
|
|
|
# demands (electricity/heat) |
|
50
|
|
|
demand_el = Sink( |
|
51
|
|
|
label="demand_elec", inputs={bel: Flow(nominal_value=85, fix=0.3)} |
|
52
|
|
|
) |
|
53
|
|
|
|
|
54
|
|
|
demand_th = Sink( |
|
55
|
|
|
label="demand_therm", inputs={bth: Flow(nominal_value=40, fix=0.2)} |
|
56
|
|
|
) |
|
57
|
|
|
|
|
58
|
|
|
# combined heat and power plant (chp) |
|
59
|
|
|
pp_chp = Transformer( |
|
60
|
|
|
label="pp_chp", |
|
61
|
|
|
inputs={bgas: Flow()}, |
|
62
|
|
|
outputs={ |
|
63
|
|
|
bel: Flow(nominal_value=30, variable_costs=42), |
|
64
|
|
|
bth: Flow(nominal_value=40), |
|
65
|
|
|
}, |
|
66
|
|
|
conversion_factors={bel: 0.3, bth: 0.4}, |
|
67
|
|
|
) |
|
68
|
|
|
|
|
69
|
|
|
# heatpump with a coefficient of performance (COP) of 3 |
|
70
|
|
|
b_heat_source = Bus(label="b_heat_source") |
|
71
|
|
|
|
|
72
|
|
|
heat_source = Source(label="heat_source", outputs={b_heat_source: Flow()}) |
|
73
|
|
|
|
|
74
|
|
|
cop = 3 |
|
75
|
|
|
heat_pump = Transformer( |
|
76
|
|
|
label="heat_pump", |
|
77
|
|
|
inputs={bel: Flow(), b_heat_source: Flow()}, |
|
78
|
|
|
outputs={bth: Flow(nominal_value=10)}, |
|
79
|
|
|
conversion_factors={bel: 1 / 3, b_heat_source: (cop - 1) / cop}, |
|
80
|
|
|
) |
|
81
|
|
|
|
|
82
|
|
|
energysystem = EnergySystem(timeincrement=[1], timemode="explicit") |
|
83
|
|
|
energysystem.add( |
|
84
|
|
|
bgas, |
|
85
|
|
|
bel, |
|
86
|
|
|
bth, |
|
87
|
|
|
excess_el, |
|
88
|
|
|
wind, |
|
89
|
|
|
demand_el, |
|
90
|
|
|
demand_th, |
|
91
|
|
|
pp_chp, |
|
92
|
|
|
b_heat_source, |
|
93
|
|
|
heat_source, |
|
94
|
|
|
heat_pump, |
|
95
|
|
|
) |
|
96
|
|
|
|
|
97
|
|
|
# ################################ optimization ########################### |
|
98
|
|
|
|
|
99
|
|
|
# create optimization model based on energy_system |
|
100
|
|
|
optimization_model = Model(energysystem=energysystem) |
|
101
|
|
|
|
|
102
|
|
|
# solve problem |
|
103
|
|
|
optimization_model.solve(solver=solver) |
|
104
|
|
|
|
|
105
|
|
|
# write back results from optimization object to energysystem |
|
106
|
|
|
optimization_model.results() |
|
107
|
|
|
|
|
108
|
|
|
# ################################ results ################################ |
|
109
|
|
|
data = views.node(processing.results(model=optimization_model), "b_el") |
|
110
|
|
|
|
|
111
|
|
|
# generate results to be evaluated in tests |
|
112
|
|
|
results = data["sequences"].sum(axis=0).to_dict() |
|
113
|
|
|
|
|
114
|
|
|
print("DateTimeIndex:", data["sequences"].index) |
|
115
|
|
|
|
|
116
|
|
|
test_results = { |
|
117
|
|
|
(("wind", "b_el"), "flow"): 33, |
|
118
|
|
|
(("b_el", "demand_elec"), "flow"): 26, |
|
119
|
|
|
(("b_el", "excess_el"), "flow"): 5, |
|
120
|
|
|
(("b_el", "heat_pump"), "flow"): 3, |
|
121
|
|
|
} |
|
122
|
|
|
|
|
123
|
|
|
for key in test_results.keys(): |
|
124
|
|
|
eq_(int(round(results[key])), int(round(test_results[key]))) |
|
125
|
|
|
|