|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
This example illustrates the combination of Investment and NonConvex options |
|
7
|
|
|
applied to a diesel generator in a hybrid mini-grid system. |
|
8
|
|
|
|
|
9
|
|
|
There are the following components: |
|
10
|
|
|
|
|
11
|
|
|
- pv: solar potential to generate electricity |
|
12
|
|
|
- diesel_source: input diesel for the diesel genset |
|
13
|
|
|
- diesel_genset: generates ac electricity |
|
14
|
|
|
- rectifier: converts generated ac electricity from the diesel genset |
|
15
|
|
|
to dc electricity |
|
16
|
|
|
- inverter: converts generated dc electricity from the pv to ac electricity |
|
17
|
|
|
- battery: stores the generated dc electricity |
|
18
|
|
|
- demand_el: ac electricity demand (given as a separate *.csv file) |
|
19
|
|
|
- excess_el: allows for some electricity overproduction |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
Installation requirements |
|
24
|
|
|
------------------------- |
|
25
|
|
|
This example requires the version v0.5.x of oemof.solph. Install by: |
|
26
|
|
|
|
|
27
|
|
|
pip install 'oemof.solph>=0.5,<0.6' |
|
28
|
|
|
|
|
29
|
|
|
""" |
|
30
|
|
|
|
|
31
|
|
|
__copyright__ = "oemof developer group" |
|
32
|
|
|
__license__ = "MIT" |
|
33
|
|
|
|
|
34
|
|
|
import numpy as np |
|
35
|
|
|
import os |
|
36
|
|
|
import pandas as pd |
|
37
|
|
|
import time |
|
38
|
|
|
from datetime import datetime, timedelta |
|
39
|
|
|
from oemof import solph |
|
40
|
|
|
import warnings |
|
41
|
|
|
|
|
42
|
|
|
try: |
|
43
|
|
|
import matplotlib.pyplot as plt |
|
44
|
|
|
except ImportError: |
|
45
|
|
|
plt = None |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
def main(): |
|
49
|
|
|
########################################################################## |
|
50
|
|
|
# Initialize the energy system and calculate necessary parameters |
|
51
|
|
|
########################################################################## |
|
52
|
|
|
|
|
53
|
|
|
# Start time for calculating the total elapsed time. |
|
54
|
|
|
start_simulation_time = time.time() |
|
55
|
|
|
|
|
56
|
|
|
start = "2022-01-01" |
|
57
|
|
|
|
|
58
|
|
|
# The maximum number of days depends on the given *.csv file. |
|
59
|
|
|
n_days = 10 |
|
60
|
|
|
n_days_in_year = 365 |
|
61
|
|
|
|
|
62
|
|
|
# Create date and time objects. |
|
63
|
|
|
start_date_obj = datetime.strptime(start, "%Y-%m-%d") |
|
64
|
|
|
start_date = start_date_obj.date() |
|
65
|
|
|
start_datetime = datetime.combine( |
|
66
|
|
|
start_date_obj.date(), start_date_obj.time() |
|
67
|
|
|
) |
|
68
|
|
|
end_datetime = start_datetime + timedelta(days=n_days) |
|
69
|
|
|
|
|
70
|
|
|
# Import data. |
|
71
|
|
|
filename = os.path.join(os.getcwd(), "solar_generation.csv") |
|
72
|
|
|
try: |
|
73
|
|
|
data = pd.read_csv(filename) |
|
74
|
|
|
except FileNotFoundError: |
|
75
|
|
|
msg = "Data file not found: {0}. Only one value used!" |
|
76
|
|
|
warnings.warn(msg.format(filename), UserWarning) |
|
77
|
|
|
data = pd.DataFrame({"pv": [0.3], "wind": [0.6], "demand_el": [500]}) |
|
78
|
|
|
|
|
79
|
|
|
# Change the index of data to be able to select data based on the time |
|
80
|
|
|
# range. |
|
81
|
|
|
data.index = pd.date_range(start="2022-01-01", periods=len(data), freq="H") |
|
82
|
|
|
|
|
83
|
|
|
# Choose the range of the solar potential and demand |
|
84
|
|
|
# based on the selected simulation period. |
|
85
|
|
|
solar_potential = data.SolarGen.loc[start_datetime:end_datetime] |
|
86
|
|
|
hourly_demand = data.Demand.loc[start_datetime:end_datetime] |
|
87
|
|
|
peak_solar_potential = solar_potential.max() |
|
88
|
|
|
peak_demand = hourly_demand.max() |
|
89
|
|
|
|
|
90
|
|
|
# Create the energy system. |
|
91
|
|
|
date_time_index = solph.create_time_index( |
|
92
|
|
|
number=n_days * 24, start=start_date |
|
93
|
|
|
) |
|
94
|
|
|
energysystem = solph.EnergySystem( |
|
95
|
|
|
timeindex=date_time_index, infer_last_interval=False |
|
96
|
|
|
) |
|
97
|
|
|
|
|
98
|
|
|
# -------------------- BUSES -------------------- |
|
99
|
|
|
# Create electricity and diesel buses. |
|
100
|
|
|
b_el_ac = solph.buses.Bus(label="electricity_ac") |
|
101
|
|
|
b_el_dc = solph.buses.Bus(label="electricity_dc") |
|
102
|
|
|
b_diesel = solph.buses.Bus(label="diesel") |
|
103
|
|
|
|
|
104
|
|
|
# -------------------- SOURCES -------------------- |
|
105
|
|
|
diesel_cost = 0.65 # currency/l |
|
106
|
|
|
diesel_density = 0.846 # kg/l |
|
107
|
|
|
diesel_lhv = 11.83 # kWh/kg |
|
108
|
|
|
diesel_source = solph.components.Source( |
|
109
|
|
|
label="diesel_source", |
|
110
|
|
|
outputs={ |
|
111
|
|
|
b_diesel: solph.flows.Flow( |
|
112
|
|
|
variable_costs=diesel_cost / diesel_density / diesel_lhv |
|
113
|
|
|
) |
|
114
|
|
|
}, |
|
115
|
|
|
) |
|
116
|
|
|
|
|
117
|
|
|
# EPC stands for the equivalent periodical costs. |
|
118
|
|
|
epc_pv = 152.62 # currency/kW/year |
|
119
|
|
|
pv = solph.components.Source( |
|
120
|
|
|
label="pv", |
|
121
|
|
|
outputs={ |
|
122
|
|
|
b_el_dc: solph.flows.Flow( |
|
123
|
|
|
fix=solar_potential / peak_solar_potential, |
|
124
|
|
|
nominal_value=None, |
|
125
|
|
|
investment=solph.Investment( |
|
126
|
|
|
ep_costs=epc_pv * n_days / n_days_in_year |
|
127
|
|
|
), |
|
128
|
|
|
variable_costs=0, |
|
129
|
|
|
) |
|
130
|
|
|
}, |
|
131
|
|
|
) |
|
132
|
|
|
|
|
133
|
|
|
# -------------------- TRANSFORMERS -------------------- |
|
134
|
|
|
# The diesel genset assumed to have a fixed efficiency of 33%. |
|
135
|
|
|
|
|
136
|
|
|
# The output power of the diesel genset can only vary between |
|
137
|
|
|
# the given minimum and maximum loads, which represent the fraction |
|
138
|
|
|
# of the optimal capacity obtained from the optimization. |
|
139
|
|
|
|
|
140
|
|
|
epc_diesel_genset = 84.80 # currency/kW/year |
|
141
|
|
|
variable_cost_diesel_genset = 0.045 # currency/kWh |
|
142
|
|
|
min_load = 0.2 |
|
143
|
|
|
max_load = 1.0 |
|
144
|
|
|
diesel_genset = solph.components.Transformer( |
|
145
|
|
|
label="diesel_genset", |
|
146
|
|
|
inputs={b_diesel: solph.flows.Flow()}, |
|
147
|
|
|
outputs={ |
|
148
|
|
|
b_el_ac: solph.flows.Flow( |
|
149
|
|
|
nominal_value=None, |
|
150
|
|
|
variable_costs=variable_cost_diesel_genset, |
|
151
|
|
|
min=min_load, |
|
152
|
|
|
max=max_load, |
|
153
|
|
|
investment=solph.Investment( |
|
154
|
|
|
ep_costs=epc_diesel_genset * n_days / n_days_in_year, |
|
155
|
|
|
maximum=2 * peak_demand, |
|
156
|
|
|
), |
|
157
|
|
|
nonconvex=solph.NonConvex(), |
|
158
|
|
|
) |
|
159
|
|
|
}, |
|
160
|
|
|
conversion_factors={b_el_ac: 0.33}, |
|
161
|
|
|
) |
|
162
|
|
|
|
|
163
|
|
|
# The rectifier assumed to have a fixed efficiency of 98%. |
|
164
|
|
|
epc_rectifier = 62.35 # currency/kW/year |
|
165
|
|
|
rectifier = solph.components.Transformer( |
|
166
|
|
|
label="rectifier", |
|
167
|
|
|
inputs={ |
|
168
|
|
|
b_el_ac: solph.flows.Flow( |
|
169
|
|
|
nominal_value=None, |
|
170
|
|
|
investment=solph.Investment( |
|
171
|
|
|
ep_costs=epc_rectifier * n_days / n_days_in_year |
|
172
|
|
|
), |
|
173
|
|
|
variable_costs=0, |
|
174
|
|
|
) |
|
175
|
|
|
}, |
|
176
|
|
|
outputs={b_el_dc: solph.flows.Flow()}, |
|
177
|
|
|
conversion_factor={ |
|
178
|
|
|
b_el_dc: 0.98, |
|
179
|
|
|
}, |
|
180
|
|
|
) |
|
181
|
|
|
|
|
182
|
|
|
# The inverter assumed to have a fixed efficiency of 98%. |
|
183
|
|
|
epc_inverter = 62.35 # currency/kW/year |
|
184
|
|
|
inverter = solph.components.Transformer( |
|
185
|
|
|
label="inverter", |
|
186
|
|
|
inputs={ |
|
187
|
|
|
b_el_dc: solph.flows.Flow( |
|
188
|
|
|
nominal_value=None, |
|
189
|
|
|
investment=solph.Investment( |
|
190
|
|
|
ep_costs=epc_inverter * n_days / n_days_in_year |
|
191
|
|
|
), |
|
192
|
|
|
variable_costs=0, |
|
193
|
|
|
) |
|
194
|
|
|
}, |
|
195
|
|
|
outputs={b_el_ac: solph.flows.Flow()}, |
|
196
|
|
|
conversion_factor={ |
|
197
|
|
|
b_el_ac: 0.98, |
|
198
|
|
|
}, |
|
199
|
|
|
) |
|
200
|
|
|
|
|
201
|
|
|
# -------------------- STORAGE -------------------- |
|
202
|
|
|
epc_battery = 101.00 # currency/kWh/year |
|
203
|
|
|
battery = solph.components.GenericStorage( |
|
204
|
|
|
label="battery", |
|
205
|
|
|
nominal_storage_capacity=None, |
|
206
|
|
|
investment=solph.Investment( |
|
207
|
|
|
ep_costs=epc_battery * n_days / n_days_in_year |
|
208
|
|
|
), |
|
209
|
|
|
inputs={b_el_dc: solph.flows.Flow(variable_costs=0)}, |
|
210
|
|
|
outputs={ |
|
211
|
|
|
b_el_dc: solph.flows.Flow(investment=solph.Investment(ep_costs=0)) |
|
212
|
|
|
}, |
|
213
|
|
|
initial_storage_level=0.0, |
|
214
|
|
|
min_storage_level=0.0, |
|
215
|
|
|
max_storage_level=1.0, |
|
216
|
|
|
balanced=True, |
|
217
|
|
|
inflow_conversion_factor=0.9, |
|
218
|
|
|
outflow_conversion_factor=0.9, |
|
219
|
|
|
invest_relation_input_capacity=1, |
|
220
|
|
|
invest_relation_output_capacity=0.5, |
|
221
|
|
|
) |
|
222
|
|
|
|
|
223
|
|
|
# -------------------- SINKS -------------------- |
|
224
|
|
|
demand_el = solph.components.Sink( |
|
225
|
|
|
label="electricity_demand", |
|
226
|
|
|
inputs={ |
|
227
|
|
|
b_el_ac: solph.flows.Flow( |
|
228
|
|
|
fix=hourly_demand / peak_demand, |
|
229
|
|
|
nominal_value=peak_demand, |
|
230
|
|
|
) |
|
231
|
|
|
}, |
|
232
|
|
|
) |
|
233
|
|
|
|
|
234
|
|
|
excess_el = solph.components.Sink( |
|
235
|
|
|
label="excess_el", |
|
236
|
|
|
inputs={b_el_dc: solph.flows.Flow()}, |
|
237
|
|
|
) |
|
238
|
|
|
|
|
239
|
|
|
# Add all objects to the energy system. |
|
240
|
|
|
energysystem.add( |
|
241
|
|
|
pv, |
|
242
|
|
|
diesel_source, |
|
243
|
|
|
b_el_dc, |
|
244
|
|
|
b_el_ac, |
|
245
|
|
|
b_diesel, |
|
246
|
|
|
inverter, |
|
247
|
|
|
rectifier, |
|
248
|
|
|
diesel_genset, |
|
249
|
|
|
battery, |
|
250
|
|
|
demand_el, |
|
251
|
|
|
excess_el, |
|
252
|
|
|
) |
|
253
|
|
|
|
|
254
|
|
|
########################################################################## |
|
255
|
|
|
# Optimise the energy system |
|
256
|
|
|
########################################################################## |
|
257
|
|
|
|
|
258
|
|
|
# The higher the MipGap or ratioGap, the faster the solver would converge, |
|
259
|
|
|
# but the less accurate the results would be. |
|
260
|
|
|
solver_option = {"gurobi": {"MipGap": "0.02"}, "cbc": {"ratioGap": "0.02"}} |
|
261
|
|
|
solver = "cbc" |
|
262
|
|
|
|
|
263
|
|
|
model = solph.Model(energysystem) |
|
264
|
|
|
model.solve( |
|
265
|
|
|
solver=solver, |
|
266
|
|
|
solve_kwargs={"tee": True}, |
|
267
|
|
|
cmdline_options=solver_option[solver], |
|
268
|
|
|
) |
|
269
|
|
|
|
|
270
|
|
|
# End of the calculation time. |
|
271
|
|
|
end_simulation_time = time.time() |
|
272
|
|
|
|
|
273
|
|
|
########################################################################## |
|
274
|
|
|
# Process the results |
|
275
|
|
|
########################################################################## |
|
276
|
|
|
|
|
277
|
|
|
results = solph.processing.results(model) |
|
278
|
|
|
|
|
279
|
|
|
results_pv = solph.views.node(results=results, node="pv") |
|
280
|
|
|
results_diesel_source = solph.views.node( |
|
281
|
|
|
results=results, node="diesel_source" |
|
282
|
|
|
) |
|
283
|
|
|
results_diesel_genset = solph.views.node( |
|
284
|
|
|
results=results, node="diesel_genset" |
|
285
|
|
|
) |
|
286
|
|
|
results_inverter = solph.views.node(results=results, node="inverter") |
|
287
|
|
|
results_rectifier = solph.views.node(results=results, node="rectifier") |
|
288
|
|
|
results_battery = solph.views.node(results=results, node="battery") |
|
289
|
|
|
results_demand_el = solph.views.node( |
|
290
|
|
|
results=results, node="electricity_demand" |
|
291
|
|
|
) |
|
292
|
|
|
results_excess_el = solph.views.node(results=results, node="excess_el") |
|
293
|
|
|
|
|
294
|
|
|
# -------------------- SEQUENCES (DYNAMIC) -------------------- |
|
295
|
|
|
# Hourly demand profile. |
|
296
|
|
|
sequences_demand = results_demand_el["sequences"][ |
|
297
|
|
|
(("electricity_ac", "electricity_demand"), "flow") |
|
298
|
|
|
] |
|
299
|
|
|
|
|
300
|
|
|
# Hourly profiles for solar potential and pv production. |
|
301
|
|
|
sequences_pv = results_pv["sequences"][(("pv", "electricity_dc"), "flow")] |
|
302
|
|
|
|
|
303
|
|
|
# Hourly profiles for diesel consumption and electricity production |
|
304
|
|
|
# in the diesel genset. |
|
305
|
|
|
# The 'flow' from oemof is in kWh and must be converted to |
|
306
|
|
|
# kg by dividing it by the lower heating value and then to |
|
307
|
|
|
# liter by dividing it by the diesel density. |
|
308
|
|
|
sequences_diesel_consumption = ( |
|
309
|
|
|
results_diesel_source["sequences"][ |
|
310
|
|
|
(("diesel_source", "diesel"), "flow") |
|
311
|
|
|
] |
|
312
|
|
|
/ diesel_lhv |
|
313
|
|
|
/ diesel_density |
|
314
|
|
|
) |
|
315
|
|
|
|
|
316
|
|
|
# Hourly profiles for electricity production in the diesel genset. |
|
317
|
|
|
sequences_diesel_genset = results_diesel_genset["sequences"][ |
|
318
|
|
|
(("diesel_genset", "electricity_ac"), "flow") |
|
319
|
|
|
] |
|
320
|
|
|
|
|
321
|
|
|
# Hourly profiles for excess ac and dc electricity production. |
|
322
|
|
|
sequences_excess = results_excess_el["sequences"][ |
|
323
|
|
|
(("electricity_dc", "excess_el"), "flow") |
|
324
|
|
|
] |
|
325
|
|
|
|
|
326
|
|
|
# -------------------- SCALARS (STATIC) -------------------- |
|
327
|
|
|
capacity_diesel_genset = results_diesel_genset["scalars"][ |
|
328
|
|
|
(("diesel_genset", "electricity_ac"), "invest") |
|
329
|
|
|
] |
|
330
|
|
|
|
|
331
|
|
|
# Define a tolerance to force 'too close' numbers to the `min_load` |
|
332
|
|
|
# and to 0 to be the same as the `min_load` and 0. |
|
333
|
|
|
tol = 1e-8 |
|
334
|
|
|
load_diesel_genset = sequences_diesel_genset / capacity_diesel_genset |
|
335
|
|
|
sequences_diesel_genset[np.abs(load_diesel_genset) < tol] = 0 |
|
336
|
|
|
sequences_diesel_genset[np.abs(load_diesel_genset - min_load) < tol] = ( |
|
337
|
|
|
min_load * capacity_diesel_genset |
|
338
|
|
|
) |
|
339
|
|
|
sequences_diesel_genset[np.abs(load_diesel_genset - max_load) < tol] = ( |
|
340
|
|
|
max_load * capacity_diesel_genset |
|
341
|
|
|
) |
|
342
|
|
|
|
|
343
|
|
|
capacity_pv = results_pv["scalars"][(("pv", "electricity_dc"), "invest")] |
|
344
|
|
|
capacity_inverter = results_inverter["scalars"][ |
|
345
|
|
|
(("electricity_dc", "inverter"), "invest") |
|
346
|
|
|
] |
|
347
|
|
|
capacity_rectifier = results_rectifier["scalars"][ |
|
348
|
|
|
(("electricity_ac", "rectifier"), "invest") |
|
349
|
|
|
] |
|
350
|
|
|
capacity_battery = results_battery["scalars"][ |
|
351
|
|
|
(("electricity_dc", "battery"), "invest") |
|
352
|
|
|
] |
|
353
|
|
|
|
|
354
|
|
|
total_cost_component = ( |
|
355
|
|
|
( |
|
356
|
|
|
epc_diesel_genset * capacity_diesel_genset |
|
357
|
|
|
+ epc_pv * capacity_pv |
|
358
|
|
|
+ epc_rectifier * capacity_rectifier |
|
359
|
|
|
+ epc_inverter * capacity_inverter |
|
360
|
|
|
+ epc_battery * capacity_battery |
|
361
|
|
|
) |
|
362
|
|
|
* n_days |
|
363
|
|
|
/ n_days_in_year |
|
364
|
|
|
) |
|
365
|
|
|
|
|
366
|
|
|
# The only componnet with the variable cost is the diesl genset |
|
367
|
|
|
total_cost_variable = ( |
|
368
|
|
|
variable_cost_diesel_genset * sequences_diesel_genset.sum(axis=0) |
|
369
|
|
|
) |
|
370
|
|
|
|
|
371
|
|
|
total_cost_diesel = diesel_cost * sequences_diesel_consumption.sum(axis=0) |
|
372
|
|
|
total_revenue = ( |
|
373
|
|
|
total_cost_component + total_cost_variable + total_cost_diesel |
|
374
|
|
|
) |
|
375
|
|
|
total_demand = sequences_demand.sum(axis=0) |
|
376
|
|
|
|
|
377
|
|
|
# Levelized cost of electricity in the system in currency's Cent per kWh. |
|
378
|
|
|
lcoe = 100 * total_revenue / total_demand |
|
379
|
|
|
|
|
380
|
|
|
# The share of renewable energy source used to cover the demand. |
|
381
|
|
|
res = ( |
|
382
|
|
|
100 |
|
383
|
|
|
* sequences_pv.sum(axis=0) |
|
384
|
|
|
/ (sequences_diesel_genset.sum(axis=0) + sequences_pv.sum(axis=0)) |
|
385
|
|
|
) |
|
386
|
|
|
|
|
387
|
|
|
# The amount of excess electricity (which must probably be dumped). |
|
388
|
|
|
excess_rate = ( |
|
389
|
|
|
100 |
|
390
|
|
|
* sequences_excess.sum(axis=0) |
|
391
|
|
|
/ (sequences_excess.sum(axis=0) + sequences_demand.sum(axis=0)) |
|
392
|
|
|
) |
|
393
|
|
|
|
|
394
|
|
|
########################################################################## |
|
395
|
|
|
# Print the results in the terminal |
|
396
|
|
|
########################################################################## |
|
397
|
|
|
|
|
398
|
|
|
print("\n" + 50 * "*") |
|
399
|
|
|
print( |
|
400
|
|
|
f"Simulation Time:\t {end_simulation_time-start_simulation_time:.2f} s" |
|
401
|
|
|
) |
|
402
|
|
|
print(50 * "*") |
|
403
|
|
|
print(f"Peak Demand:\t {sequences_demand.max():.0f} kW") |
|
404
|
|
|
print(f"LCOE:\t\t {lcoe:.2f} cent/kWh") |
|
405
|
|
|
print(f"RES:\t\t {res:.0f}%") |
|
406
|
|
|
print(f"Excess:\t\t {excess_rate:.1f}% of the total production") |
|
407
|
|
|
print(50 * "*") |
|
408
|
|
|
print("Optimal Capacities:") |
|
409
|
|
|
print("-------------------") |
|
410
|
|
|
print(f"Diesel Genset:\t {capacity_diesel_genset:.0f} kW") |
|
411
|
|
|
print(f"PV:\t\t {capacity_pv:.0f} kW") |
|
412
|
|
|
print(f"Battery:\t {capacity_battery:.0f} kW") |
|
413
|
|
|
print(f"Inverter:\t {capacity_inverter:.0f} kW") |
|
414
|
|
|
print(f"Rectifier:\t {capacity_rectifier:.0f} kW") |
|
415
|
|
|
print(50 * "*") |
|
416
|
|
|
|
|
417
|
|
|
########################################################################## |
|
418
|
|
|
# Plot the duration curve for the diesel genset |
|
419
|
|
|
########################################################################## |
|
420
|
|
|
|
|
421
|
|
|
if plt is not None: |
|
422
|
|
|
|
|
423
|
|
|
# Create the duration curve for the diesel genset. |
|
424
|
|
|
fig, ax = plt.subplots(figsize=(10, 5)) |
|
425
|
|
|
|
|
426
|
|
|
# Sort the power generated by the diesel genset in descending order. |
|
427
|
|
|
diesel_genset_duration_curve = np.sort(sequences_diesel_genset)[::-1] |
|
428
|
|
|
|
|
429
|
|
|
percentage = ( |
|
430
|
|
|
100 |
|
431
|
|
|
* np.arange(1, len(diesel_genset_duration_curve) + 1) |
|
432
|
|
|
/ len(diesel_genset_duration_curve) |
|
433
|
|
|
) |
|
434
|
|
|
|
|
435
|
|
|
ax.scatter( |
|
436
|
|
|
percentage, |
|
437
|
|
|
diesel_genset_duration_curve, |
|
438
|
|
|
color="dodgerblue", |
|
439
|
|
|
marker="+", |
|
440
|
|
|
) |
|
441
|
|
|
|
|
442
|
|
|
# Plot a horizontal line representing the minimum load |
|
443
|
|
|
ax.axhline( |
|
444
|
|
|
y=min_load * capacity_diesel_genset, |
|
445
|
|
|
color="crimson", |
|
446
|
|
|
linestyle="--", |
|
447
|
|
|
) |
|
448
|
|
|
min_load_annotation_text = ( |
|
449
|
|
|
f"minimum load: {min_load * capacity_diesel_genset:0.2f} kW" |
|
450
|
|
|
) |
|
451
|
|
|
ax.annotate( |
|
452
|
|
|
min_load_annotation_text, |
|
453
|
|
|
xy=(100, min_load * capacity_diesel_genset), |
|
454
|
|
|
xytext=(0, 5), |
|
455
|
|
|
textcoords="offset pixels", |
|
456
|
|
|
horizontalalignment="right", |
|
457
|
|
|
verticalalignment="bottom", |
|
458
|
|
|
) |
|
459
|
|
|
|
|
460
|
|
|
# Plot a horizontal line representing the maximum load |
|
461
|
|
|
ax.axhline( |
|
462
|
|
|
y=max_load * capacity_diesel_genset, |
|
463
|
|
|
color="crimson", |
|
464
|
|
|
linestyle="--", |
|
465
|
|
|
) |
|
466
|
|
|
max_load_annotation_text = ( |
|
467
|
|
|
f"maximum load: {max_load * capacity_diesel_genset:0.2f} kW" |
|
468
|
|
|
) |
|
469
|
|
|
ax.annotate( |
|
470
|
|
|
max_load_annotation_text, |
|
471
|
|
|
xy=(100, max_load * capacity_diesel_genset), |
|
472
|
|
|
xytext=(0, -5), |
|
473
|
|
|
textcoords="offset pixels", |
|
474
|
|
|
horizontalalignment="right", |
|
475
|
|
|
verticalalignment="top", |
|
476
|
|
|
) |
|
477
|
|
|
|
|
478
|
|
|
ax.set_title( |
|
479
|
|
|
"Duration Curve for the Diesel Genset Electricity Production", |
|
480
|
|
|
fontweight="bold", |
|
481
|
|
|
) |
|
482
|
|
|
ax.set_ylabel("diesel genset production [kW]") |
|
483
|
|
|
ax.set_xlabel("percentage of annual operation [%]") |
|
484
|
|
|
|
|
485
|
|
|
# Create the second axis on the right side of the diagram |
|
486
|
|
|
# representing the operation load of the diesel genset. |
|
487
|
|
|
second_ax = ax.secondary_yaxis( |
|
488
|
|
|
"right", |
|
489
|
|
|
functions=( |
|
490
|
|
|
lambda x: x / capacity_diesel_genset * 100, |
|
491
|
|
|
lambda x: x * capacity_diesel_genset / 100, |
|
492
|
|
|
), |
|
493
|
|
|
) |
|
494
|
|
|
second_ax.set_ylabel("diesel genset operation load [%]") |
|
495
|
|
|
|
|
496
|
|
|
plt.show() |
|
497
|
|
|
|
|
498
|
|
|
|
|
499
|
|
|
if __name__ == "__main__": |
|
500
|
|
|
main() |
|
501
|
|
|
|