kytos-ng /
pathfinder
| 1 | """Module Graph of kytos/pathfinder Kytos Network Application.""" |
||
| 2 | |||
| 3 | # pylint: disable=too-many-arguments,too-many-locals |
||
| 4 | 1 | from itertools import combinations, islice |
|
| 5 | |||
| 6 | 1 | from kytos.core import log |
|
| 7 | 1 | from napps.kytos.pathfinder.utils import (filter_ge, filter_in, filter_le, |
|
| 8 | lazy_filter, nx_edge_data_delay, |
||
| 9 | nx_edge_data_priority, |
||
| 10 | nx_edge_data_weight) |
||
| 11 | |||
| 12 | 1 | try: |
|
| 13 | 1 | import networkx as nx |
|
| 14 | 1 | from networkx.exception import NetworkXNoPath, NodeNotFound |
|
| 15 | except ImportError: |
||
| 16 | PACKAGE = "networkx==2.5.1" |
||
| 17 | log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
||
| 18 | |||
| 19 | |||
| 20 | 1 | class KytosGraph: |
|
| 21 | """Class responsible for the graph generation.""" |
||
| 22 | |||
| 23 | 1 | def __init__(self): |
|
| 24 | 1 | self.graph = nx.Graph() |
|
| 25 | 1 | self._filter_functions = { |
|
| 26 | "ownership": lazy_filter(str, filter_in("ownership")), |
||
| 27 | "bandwidth": lazy_filter((int, float), filter_ge("bandwidth")), |
||
| 28 | "reliability": lazy_filter((int, float), filter_ge("reliability")), |
||
| 29 | "priority": lazy_filter((int, float), filter_le("priority")), |
||
| 30 | "utilization": lazy_filter((int, float), filter_le("utilization")), |
||
| 31 | "delay": lazy_filter((int, float), filter_le("delay")), |
||
| 32 | } |
||
| 33 | 1 | self.spf_edge_data_cbs = { |
|
| 34 | "hop": nx_edge_data_weight, |
||
| 35 | "delay": nx_edge_data_delay, |
||
| 36 | "priority": nx_edge_data_priority, |
||
| 37 | } |
||
| 38 | |||
| 39 | 1 | def clear(self): |
|
| 40 | """Remove all nodes and links registered.""" |
||
| 41 | 1 | self.graph.clear() |
|
| 42 | |||
| 43 | 1 | def update_topology(self, topology): |
|
| 44 | """Update all nodes and links inside the graph.""" |
||
| 45 | 1 | self.graph.clear() |
|
| 46 | 1 | self.update_nodes(topology.switches) |
|
| 47 | 1 | self.update_links(topology.links) |
|
| 48 | |||
| 49 | 1 | def update_nodes(self, nodes): |
|
| 50 | """Update all nodes inside the graph.""" |
||
| 51 | 1 | for node in nodes.values(): |
|
| 52 | 1 | try: |
|
| 53 | 1 | self.graph.add_node(node.id) |
|
| 54 | |||
| 55 | 1 | for interface in node.interfaces.values(): |
|
| 56 | 1 | self.graph.add_node(interface.id) |
|
| 57 | 1 | self.graph.add_edge(node.id, interface.id) |
|
| 58 | |||
| 59 | 1 | except AttributeError as err: |
|
| 60 | 1 | raise TypeError( |
|
| 61 | f"Error when updating nodes inside the graph: {str(err)}" |
||
| 62 | ) |
||
| 63 | |||
| 64 | 1 | def update_links(self, links): |
|
| 65 | """Update all links inside the graph.""" |
||
| 66 | 1 | for link in links.values(): |
|
| 67 | 1 | if link.is_active(): |
|
| 68 | 1 | self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
|
| 69 | 1 | self.update_link_metadata(link) |
|
| 70 | |||
| 71 | 1 | def update_link_metadata(self, link): |
|
| 72 | """Update link metadata.""" |
||
| 73 | 1 | for key, value in link.metadata.items(): |
|
| 74 | 1 | if key not in self._filter_functions: |
|
| 75 | 1 | continue |
|
| 76 | 1 | endpoint_a = link.endpoint_a.id |
|
| 77 | 1 | endpoint_b = link.endpoint_b.id |
|
| 78 | 1 | self.graph[endpoint_a][endpoint_b][key] = value |
|
| 79 | |||
| 80 | 1 | def get_link_metadata(self, endpoint_a, endpoint_b): |
|
| 81 | """Return the metadata of a link.""" |
||
| 82 | 1 | return self.graph.get_edge_data(endpoint_a, endpoint_b) |
|
| 83 | |||
| 84 | 1 | @staticmethod |
|
| 85 | def _remove_switch_hops(circuit): |
||
| 86 | """Remove switch hops from a circuit hops list.""" |
||
| 87 | 1 | for hop in circuit["hops"]: |
|
| 88 | 1 | if len(hop.split(":")) == 8: |
|
| 89 | 1 | circuit["hops"].remove(hop) |
|
| 90 | |||
| 91 | 1 | def _path_cost(self, path, weight="hop", default_cost=1): |
|
| 92 | """Compute the path cost given an attribute.""" |
||
| 93 | 1 | cost = 0 |
|
| 94 | 1 | for node, nbr in nx.utils.pairwise(path): |
|
| 95 | 1 | cost += self.graph[node][nbr].get(weight, default_cost) |
|
| 96 | 1 | return cost |
|
| 97 | |||
| 98 | 1 | def path_cost_builder(self, paths, weight="hop", default_weight=1): |
|
| 99 | """Build the cost of a path given a list of paths.""" |
||
| 100 | 1 | paths_acc = [] |
|
| 101 | 1 | for path in paths: |
|
| 102 | 1 | if isinstance(path, list): |
|
| 103 | 1 | paths_acc.append( |
|
| 104 | { |
||
| 105 | "hops": path, |
||
| 106 | "cost": self._path_cost( |
||
| 107 | path, weight=weight, default_cost=default_weight |
||
| 108 | ), |
||
| 109 | } |
||
| 110 | ) |
||
| 111 | 1 | elif isinstance(path, dict): |
|
| 112 | 1 | path["cost"] = self._path_cost( |
|
| 113 | path["hops"], weight=weight, default_cost=default_weight |
||
| 114 | ) |
||
| 115 | 1 | paths_acc.append(path) |
|
| 116 | else: |
||
| 117 | raise TypeError( |
||
| 118 | f"type: '{type(path)}' must be be either list or dict. " |
||
| 119 | f"path: {path}" |
||
| 120 | ) |
||
| 121 | 1 | return paths_acc |
|
| 122 | |||
| 123 | 1 | def k_shortest_paths( |
|
| 124 | self, source, destination, weight=None, k=1, graph=None |
||
| 125 | ): |
||
| 126 | """ |
||
| 127 | Compute up to k shortest paths and return them. |
||
| 128 | |||
| 129 | This procedure is based on algorithm by Jin Y. Yen [1]. |
||
| 130 | Since Yen's algorithm calls Dijkstra's up to k times, the time |
||
| 131 | complexity will be proportional to K * Dijkstra's, average |
||
| 132 | O(K(|V| + |E|)logV), assuming it's using a heap, where V is the |
||
| 133 | number of vertices and E number of egdes. |
||
| 134 | |||
| 135 | References |
||
| 136 | ---------- |
||
| 137 | .. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a |
||
| 138 | Network", Management Science, Vol. 17, No. 11, Theory Series |
||
| 139 | (Jul., 1971), pp. 712-716. |
||
| 140 | """ |
||
| 141 | 1 | try: |
|
| 142 | 1 | return list( |
|
| 143 | islice( |
||
| 144 | nx.shortest_simple_paths( |
||
| 145 | graph or self.graph, |
||
| 146 | source, |
||
| 147 | destination, |
||
| 148 | weight=weight, |
||
| 149 | ), |
||
| 150 | k, |
||
| 151 | ) |
||
| 152 | ) |
||
| 153 | 1 | except (NodeNotFound, NetworkXNoPath): |
|
| 154 | 1 | return [] |
|
| 155 | |||
| 156 | 1 | def constrained_k_shortest_paths( |
|
| 157 | self, |
||
| 158 | source, |
||
| 159 | destination, |
||
| 160 | weight=None, |
||
| 161 | k=1, |
||
| 162 | minimum_hits=None, |
||
| 163 | **metrics, |
||
| 164 | ): |
||
| 165 | """Calculate the constrained shortest paths with flexibility.""" |
||
| 166 | 1 | mandatory_metrics = metrics.get("mandatory_metrics", {}) |
|
| 167 | 1 | flexible_metrics = metrics.get("flexible_metrics", {}) |
|
| 168 | 1 | first_pass_links = list( |
|
| 169 | self._filter_links( |
||
| 170 | self.graph.edges(data=True), **mandatory_metrics |
||
| 171 | ) |
||
| 172 | ) |
||
| 173 | 1 | length = len(flexible_metrics) |
|
| 174 | 1 | if minimum_hits is None: |
|
| 175 | 1 | minimum_hits = 0 |
|
| 176 | 1 | minimum_hits = min(length, max(0, minimum_hits)) |
|
| 177 | |||
| 178 | 1 | paths = [] |
|
| 179 | 1 | for i in range(length, minimum_hits - 1, -1): |
|
| 180 | 1 | for combo in combinations(flexible_metrics.items(), i): |
|
| 181 | 1 | additional = dict(combo) |
|
| 182 | 1 | filtered_links = self._filter_links( |
|
| 183 | first_pass_links, **additional |
||
| 184 | ) |
||
| 185 | 1 | filtered_links = ((u, v) for u, v, d in filtered_links) |
|
|
0 ignored issues
–
show
introduced
by
Loading history...
|
|||
| 186 | 1 | for path in self.k_shortest_paths( |
|
| 187 | source, |
||
| 188 | destination, |
||
| 189 | weight=weight, |
||
| 190 | k=k, |
||
| 191 | graph=self.graph.edge_subgraph(filtered_links), |
||
| 192 | ): |
||
| 193 | 1 | paths.append( |
|
| 194 | { |
||
| 195 | "hops": path, |
||
| 196 | "metrics": {**mandatory_metrics, **additional}, |
||
| 197 | } |
||
| 198 | ) |
||
| 199 | 1 | if len(paths) == k: |
|
| 200 | 1 | return paths |
|
| 201 | 1 | if paths: |
|
| 202 | 1 | return paths |
|
| 203 | 1 | return paths |
|
| 204 | |||
| 205 | 1 | def _filter_links(self, links, **metrics): |
|
| 206 | 1 | for metric, value in metrics.items(): |
|
| 207 | 1 | filter_func = self._filter_functions.get(metric, None) |
|
| 208 | 1 | if filter_func is not None: |
|
| 209 | 1 | try: |
|
| 210 | 1 | links = filter_func(value, links) |
|
| 211 | 1 | except TypeError as err: |
|
| 212 | 1 | raise TypeError( |
|
| 213 | f"Error in {metric} value: {value} err: {err}" |
||
| 214 | ) |
||
| 215 | return links |
||
| 216 |