|
1
|
|
|
from __future__ import print_function |
|
2
|
|
|
|
|
3
|
|
|
# Standard library packages |
|
4
|
|
|
import codecs |
|
5
|
|
|
import csv |
|
6
|
|
|
import json |
|
7
|
|
|
import logging |
|
8
|
|
|
import os |
|
9
|
|
|
import re |
|
10
|
|
|
import textwrap |
|
11
|
|
|
import traceback |
|
12
|
|
|
|
|
13
|
|
|
# get basestring in py3 |
|
14
|
|
|
|
|
15
|
|
|
try: |
|
16
|
|
|
unicode = unicode |
|
17
|
|
|
except NameError: |
|
18
|
|
|
# 'unicode' is undefined, must be Python 3 |
|
19
|
|
|
unicode = str |
|
20
|
|
|
basestring = (str, bytes) |
|
21
|
|
|
else: |
|
22
|
|
|
# 'unicode' exists, must be Python 2 |
|
23
|
|
|
bytes = str |
|
24
|
|
|
basestring = basestring |
|
25
|
|
|
|
|
26
|
|
|
# Required third-party packages available on PyPi: |
|
27
|
|
|
|
|
28
|
|
|
import numpy as np |
|
29
|
|
|
|
|
30
|
|
|
# internal lasio imports |
|
31
|
|
|
|
|
32
|
|
|
from . import exceptions |
|
33
|
|
|
from .las_items import ( |
|
34
|
|
|
HeaderItem, CurveItem, SectionItems, OrderedDict) |
|
35
|
|
|
from . import defaults |
|
36
|
|
|
from . import reader |
|
37
|
|
|
from . import writer |
|
38
|
|
|
|
|
39
|
|
|
logger = logging.getLogger(__name__) |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
|
|
class LASFile(object): |
|
43
|
|
|
|
|
44
|
|
|
'''LAS file object. |
|
45
|
|
|
|
|
46
|
|
|
Keyword Arguments: |
|
47
|
|
|
file_ref (file-like object, str): either a filename, an open file |
|
48
|
|
|
object, or a string containing the contents of a file. |
|
49
|
|
|
|
|
50
|
|
|
See these routines for additional keyword arguments you can use when |
|
51
|
|
|
reading in a LAS file: |
|
52
|
|
|
|
|
53
|
|
|
* :func:`lasio.reader.open_with_codecs` - manage issues relate to character |
|
54
|
|
|
encodings |
|
55
|
|
|
* :meth:`lasio.las.LASFile.read` - control how NULL values and errors are |
|
56
|
|
|
handled during parsing |
|
57
|
|
|
|
|
58
|
|
|
Attributes: |
|
59
|
|
|
encoding (str or None): the character encoding used when reading the |
|
60
|
|
|
file in from disk |
|
61
|
|
|
|
|
62
|
|
|
''' |
|
63
|
|
|
|
|
64
|
|
|
def __init__(self, file_ref=None, **read_kwargs): |
|
65
|
|
|
super(LASFile, self).__init__() |
|
66
|
|
|
self._text = '' |
|
67
|
|
|
self.index_unit = None |
|
68
|
|
|
default_items = defaults.get_default_items() |
|
69
|
|
|
self.sections = { |
|
70
|
|
|
'Version': default_items['Version'], |
|
71
|
|
|
'Well': default_items['Well'], |
|
72
|
|
|
'Curves': default_items['Curves'], |
|
73
|
|
|
'Parameter': default_items['Parameter'], |
|
74
|
|
|
'Other': str(default_items['Other']), |
|
75
|
|
|
} |
|
76
|
|
|
|
|
77
|
|
|
if not (file_ref is None): |
|
78
|
|
|
self.read(file_ref, **read_kwargs) |
|
79
|
|
|
|
|
80
|
|
|
def read(self, file_ref, |
|
81
|
|
|
ignore_data=False, read_policy='default', null_policy='common', |
|
82
|
|
|
ignore_header_errors=False, mnemonic_case='upper', |
|
83
|
|
|
**kwargs): |
|
84
|
|
|
'''Read a LAS file. |
|
85
|
|
|
|
|
86
|
|
|
Arguments: |
|
87
|
|
|
file_ref (file-like object, str): either a filename, an open file |
|
88
|
|
|
object, or a string containing the contents of a file. |
|
89
|
|
|
|
|
90
|
|
|
Keyword Arguments: |
|
91
|
|
|
null_subs (bool): if True, replace invalid values with np.nan |
|
92
|
|
|
ignore_data (bool): if True, do not read in any of the actual data, |
|
93
|
|
|
just the header metadata. False by default. |
|
94
|
|
|
ignore_header_errors (bool): ignore LASHeaderErrors (False by |
|
95
|
|
|
default) |
|
96
|
|
|
mnemonic_case (str): 'preserve': keep the case of HeaderItem mnemonics |
|
97
|
|
|
'upper': convert all HeaderItem mnemonics to uppercase |
|
98
|
|
|
'lower': convert all HeaderItem mnemonics to lowercase |
|
99
|
|
|
|
|
100
|
|
|
See :func:`lasio.reader.open_with_codecs` for additional keyword |
|
101
|
|
|
arguments which help to manage issues relate to character encodings. |
|
102
|
|
|
|
|
103
|
|
|
''' |
|
104
|
|
|
|
|
105
|
|
|
file_obj, self.encoding = reader.open_file(file_ref, **kwargs) |
|
106
|
|
|
|
|
107
|
|
|
regexp_subs, value_null_subs, version_NULL = reader.get_substitutions( |
|
108
|
|
|
read_policy, null_policy) |
|
109
|
|
|
|
|
110
|
|
|
self.raw_sections = reader.read_file_contents( |
|
111
|
|
|
file_obj, regexp_subs, value_null_subs, ignore_data=ignore_data, ) |
|
112
|
|
|
|
|
113
|
|
|
if len(self.raw_sections) == 0: |
|
114
|
|
|
raise KeyError('No ~ sections found. Is this a LAS file?') |
|
115
|
|
|
|
|
116
|
|
|
if hasattr(file_obj, "close"): |
|
117
|
|
|
file_obj.close() |
|
118
|
|
|
|
|
119
|
|
|
def add_section(pattern, name, **sect_kws): |
|
120
|
|
|
raw_section = self.match_raw_section(pattern) |
|
121
|
|
|
drop = [] |
|
122
|
|
|
if raw_section: |
|
123
|
|
|
self.sections[name] = reader.parse_header_section(raw_section, |
|
124
|
|
|
**sect_kws) |
|
125
|
|
|
drop.append(raw_section["title"]) |
|
126
|
|
|
else: |
|
127
|
|
|
logger.warning("Header section %s regexp=%s was not found." |
|
128
|
|
|
% (name, pattern)) |
|
129
|
|
|
for key in drop: |
|
130
|
|
|
self.raw_sections.pop(key) |
|
131
|
|
|
|
|
132
|
|
|
add_section("~V", "Version", version=1.2, |
|
133
|
|
|
ignore_header_errors=ignore_header_errors, |
|
134
|
|
|
mnemonic_case=mnemonic_case) |
|
135
|
|
|
|
|
136
|
|
|
# Establish version and wrap values if possible. |
|
137
|
|
|
|
|
138
|
|
|
try: |
|
139
|
|
|
version = self.version['VERS'].value |
|
140
|
|
|
except KeyError: |
|
141
|
|
|
logger.warning('VERS item not found in the ~V section.') |
|
142
|
|
|
version = None |
|
143
|
|
|
|
|
144
|
|
|
try: |
|
145
|
|
|
wrap = self.version['WRAP'].value |
|
146
|
|
|
except KeyError: |
|
147
|
|
|
logger.warning('WRAP item not found in the ~V section') |
|
148
|
|
|
wrap = None |
|
149
|
|
|
|
|
150
|
|
|
# Validate version. |
|
151
|
|
|
# |
|
152
|
|
|
# If VERS was missing and version = None, then the file will be read in |
|
153
|
|
|
# as if version were 2.0. But there will be no VERS HeaderItem, meaning |
|
154
|
|
|
# that las.write(..., version=None) will fail with a KeyError. But |
|
155
|
|
|
# las.write(..., version=1.2) will work because a new VERS HeaderItem |
|
156
|
|
|
# will be created. |
|
157
|
|
|
|
|
158
|
|
|
try: |
|
159
|
|
|
assert version in (1.2, 2, None) |
|
160
|
|
|
except AssertionError: |
|
161
|
|
|
if version < 2: |
|
162
|
|
|
version = 1.2 |
|
163
|
|
|
else: |
|
164
|
|
|
version = 2 |
|
165
|
|
|
else: |
|
166
|
|
|
if version is None: |
|
167
|
|
|
logger.info('Assuming that LAS VERS is 2.0') |
|
168
|
|
|
version = 2 |
|
169
|
|
|
|
|
170
|
|
|
add_section("~W", "Well", version=version, |
|
171
|
|
|
ignore_header_errors=ignore_header_errors, |
|
172
|
|
|
mnemonic_case=mnemonic_case) |
|
173
|
|
|
|
|
174
|
|
|
# Establish NULL value if possible. |
|
175
|
|
|
|
|
176
|
|
|
try: |
|
177
|
|
|
null = self.well['NULL'].value |
|
178
|
|
|
except KeyError: |
|
179
|
|
|
logger.warning('NULL item not found in the ~W section') |
|
180
|
|
|
null = None |
|
181
|
|
|
|
|
182
|
|
|
add_section("~C", "Curves", version=version, |
|
183
|
|
|
ignore_header_errors=ignore_header_errors, |
|
184
|
|
|
mnemonic_case=mnemonic_case) |
|
185
|
|
|
add_section("~P", "Parameter", version=version, |
|
186
|
|
|
ignore_header_errors=ignore_header_errors, |
|
187
|
|
|
mnemonic_case=mnemonic_case) |
|
188
|
|
|
s = self.match_raw_section("~O") |
|
189
|
|
|
|
|
190
|
|
|
drop = [] |
|
191
|
|
|
if s: |
|
192
|
|
|
self.sections["Other"] = "\n".join(s["lines"]) |
|
193
|
|
|
drop.append(s["title"]) |
|
194
|
|
|
for key in drop: |
|
195
|
|
|
self.raw_sections.pop(key) |
|
196
|
|
|
|
|
197
|
|
|
# Deal with nonstandard sections that some operators and/or |
|
198
|
|
|
# service companies (eg IHS) insist on adding. |
|
199
|
|
|
drop = [] |
|
200
|
|
|
for s in self.raw_sections.values(): |
|
201
|
|
|
if s["section_type"] == "header": |
|
202
|
|
|
logger.warning('Found nonstandard LAS section: ' + s["title"]) |
|
203
|
|
|
self.sections[s["title"][1:]] = "\n".join(s["lines"]) |
|
204
|
|
|
drop.append(s["title"]) |
|
205
|
|
|
for key in drop: |
|
206
|
|
|
self.raw_sections.pop(key) |
|
207
|
|
|
|
|
208
|
|
|
if not ignore_data: |
|
209
|
|
|
drop = [] |
|
210
|
|
|
s = self.match_raw_section("~A") |
|
211
|
|
|
s_valid = True |
|
212
|
|
|
if s is None: |
|
213
|
|
|
logger.warning("No data section (regexp='~A') found") |
|
214
|
|
|
s_valid = False |
|
215
|
|
|
try: |
|
216
|
|
|
if s['ncols'] is None: |
|
217
|
|
|
logger.warning('No numerical data found inside ~A section') |
|
218
|
|
|
s_valid = False |
|
219
|
|
|
except: |
|
220
|
|
|
pass |
|
221
|
|
|
|
|
222
|
|
|
if s_valid: |
|
223
|
|
|
arr = s["array"] |
|
224
|
|
|
logger.debug('~A data.shape {}'.format(arr.shape)) |
|
225
|
|
|
if version_NULL: |
|
226
|
|
|
arr[arr == null] = np.nan |
|
227
|
|
|
logger.debug('~A after NULL replacement data.shape {}'.format(arr.shape)) |
|
228
|
|
|
|
|
229
|
|
|
n_curves = len(self.curves) |
|
230
|
|
|
n_arr_cols = len(self.curves) # provisional pending below check |
|
231
|
|
|
logger.debug("n_curves=%d ncols=%d" % (n_curves, s["ncols"])) |
|
232
|
|
|
if wrap == "NO": |
|
233
|
|
|
if s["ncols"] > n_curves: |
|
234
|
|
|
n_arr_cols = s["ncols"] |
|
235
|
|
|
data = np.reshape(arr, (-1, n_arr_cols)) |
|
236
|
|
|
|
|
237
|
|
|
self.set_data(data, truncate=False) |
|
238
|
|
|
drop.append(s["title"]) |
|
239
|
|
|
for key in drop: |
|
240
|
|
|
self.raw_sections.pop(key) |
|
241
|
|
|
|
|
242
|
|
|
check_units_on = [] |
|
243
|
|
|
for mnemonic in ('STRT', 'STOP', 'STEP'): |
|
244
|
|
|
if mnemonic in self.well: |
|
245
|
|
|
check_units_on.append(self.well[mnemonic]) |
|
246
|
|
|
if len(self.curves) > 0: |
|
247
|
|
|
check_units_on.append(self.curves[0]) |
|
248
|
|
|
for index_unit, possibilities in defaults.DEPTH_UNITS.items(): |
|
249
|
|
|
if all(i.unit.upper() in possibilities for i in check_units_on): |
|
250
|
|
|
self.index_unit = index_unit |
|
251
|
|
|
|
|
252
|
|
|
def write(self, file_ref, **kwargs): |
|
253
|
|
|
'''Write LAS file to disk. |
|
254
|
|
|
|
|
255
|
|
|
Arguments: |
|
256
|
|
|
file_ref (open file-like object or str): a file-like object opening |
|
257
|
|
|
for writing, or a filename. |
|
258
|
|
|
|
|
259
|
|
|
All ``**kwargs`` are passed to :func:`lasio.writer.write` -- please |
|
260
|
|
|
check the docstring of that function for more keyword arguments you can |
|
261
|
|
|
use here! |
|
262
|
|
|
|
|
263
|
|
|
Examples: |
|
264
|
|
|
|
|
265
|
|
|
>>> with open('test_output.las', mode='w') as f: |
|
266
|
|
|
... lasfile_obj.write(f, version=2.0) # <-- this method |
|
267
|
|
|
|
|
268
|
|
|
''' |
|
269
|
|
|
opened_file = False |
|
270
|
|
|
if isinstance(file_ref, basestring) and not hasattr(file_ref, "write"): |
|
271
|
|
|
opened_file = True |
|
272
|
|
|
file_ref = open(file_ref, "w") |
|
273
|
|
|
writer.write(self, file_ref, **kwargs) |
|
274
|
|
|
if opened_file: |
|
275
|
|
|
file_ref.close() |
|
276
|
|
|
|
|
277
|
|
|
def to_excel(self, filename): |
|
278
|
|
|
'''Export LAS file to a Microsoft Excel workbook. |
|
279
|
|
|
|
|
280
|
|
|
This function will raise an :exc:`ImportError` if ``openpyxl`` is not |
|
281
|
|
|
installed. |
|
282
|
|
|
|
|
283
|
|
|
Arguments: |
|
284
|
|
|
filename (str) |
|
285
|
|
|
|
|
286
|
|
|
''' |
|
287
|
|
|
from . import excel |
|
288
|
|
|
converter = excel.ExcelConverter(self) |
|
289
|
|
|
converter.write(filename) |
|
290
|
|
|
|
|
291
|
|
|
def to_csv(self, file_ref, mnemonics=True, units=True, units_loc='line', **kwargs): |
|
292
|
|
|
'''Export to a CSV file. |
|
293
|
|
|
|
|
294
|
|
|
Arguments: |
|
295
|
|
|
file_ref (open file-like object or str): a file-like object opening |
|
296
|
|
|
for writing, or a filename. |
|
297
|
|
|
|
|
298
|
|
|
Keyword Arguments: |
|
299
|
|
|
mnemonics (list, True, False): write mnemonics as a header line at the |
|
300
|
|
|
start. If list, use the supplied items as mnemonics. If True, |
|
301
|
|
|
use the curve mnemonics. |
|
302
|
|
|
units (list, True, False): as for mnemonics. |
|
303
|
|
|
units_loc (str or None): either 'line', '[]' or '()'. 'line' will put |
|
304
|
|
|
units on the line following the mnemonics (good for WellCAD). |
|
305
|
|
|
'[]' and '()' will put the units in either brackets or |
|
306
|
|
|
parentheses following the mnemonics, on the single header line |
|
307
|
|
|
(better for Excel) |
|
308
|
|
|
**kwargs: passed to :class:`csv.writer`. Note that if |
|
309
|
|
|
``lineterminator`` is **not** specified here, then it will be |
|
310
|
|
|
sent to :class:`csv.writer` as ``lineterminator='\\n'``. |
|
311
|
|
|
|
|
312
|
|
|
''' |
|
313
|
|
|
opened_file = False |
|
314
|
|
|
if isinstance(file_ref, basestring) and not hasattr(file_ref, "write"): |
|
315
|
|
|
opened_file = True |
|
316
|
|
|
file_ref = open(file_ref, "w") |
|
317
|
|
|
|
|
318
|
|
|
if not 'lineterminator' in kwargs: |
|
319
|
|
|
kwargs['lineterminator'] = '\n' |
|
320
|
|
|
writer = csv.writer(file_ref, **kwargs) |
|
321
|
|
|
|
|
322
|
|
|
if mnemonics is True: |
|
323
|
|
|
mnemonics = [c.original_mnemonic for c in self.curves] |
|
324
|
|
|
if units is True: |
|
325
|
|
|
units = [c.unit for c in self.curves] |
|
326
|
|
|
|
|
327
|
|
|
if mnemonics: |
|
328
|
|
|
if units_loc in ('()', '[]') and units: |
|
329
|
|
|
mnemonics = [ |
|
330
|
|
|
m + ' ' + units_loc[0] + u + units_loc[1] |
|
331
|
|
|
for m, u in zip(mnemonics, units)] |
|
332
|
|
|
writer.writerow(mnemonics) |
|
333
|
|
|
if units: |
|
334
|
|
|
if units_loc == 'line': |
|
335
|
|
|
writer.writerow(units) |
|
336
|
|
|
|
|
337
|
|
|
for i in range(self.data.shape[0]): |
|
338
|
|
|
writer.writerow(self.data[i, :]) |
|
339
|
|
|
|
|
340
|
|
|
if opened_file: |
|
341
|
|
|
file_ref.close() |
|
342
|
|
|
|
|
343
|
|
|
def match_raw_section(self, pattern, re_func="match", flags=re.IGNORECASE): |
|
344
|
|
|
'''Find raw section with a regular expression. |
|
345
|
|
|
|
|
346
|
|
|
Arguments: |
|
347
|
|
|
pattern (str): regular expression (you need to include the tilde) |
|
348
|
|
|
|
|
349
|
|
|
Keyword Arguments: |
|
350
|
|
|
re_func (str): either "match" or "search", see python ``re`` module. |
|
351
|
|
|
flags (int): flags for :func:`re.compile` |
|
352
|
|
|
|
|
353
|
|
|
Returns: |
|
354
|
|
|
dict |
|
355
|
|
|
|
|
356
|
|
|
Intended for internal use only. |
|
357
|
|
|
|
|
358
|
|
|
''' |
|
359
|
|
|
for title in self.raw_sections.keys(): |
|
360
|
|
|
title = title.strip() |
|
361
|
|
|
p = re.compile(pattern, flags=flags) |
|
362
|
|
|
if re_func == "match": |
|
363
|
|
|
re_func = re.match |
|
364
|
|
|
elif re_func == "search": |
|
365
|
|
|
re_func == re.search |
|
366
|
|
|
m = re_func(p, title) |
|
367
|
|
|
if m: |
|
368
|
|
|
return self.raw_sections[title] |
|
369
|
|
|
|
|
370
|
|
|
def get_curve(self, mnemonic): |
|
371
|
|
|
'''Return CurveItem object. |
|
372
|
|
|
|
|
373
|
|
|
Arguments: |
|
374
|
|
|
mnemonic (str): the name of the curve |
|
375
|
|
|
|
|
376
|
|
|
Returns: |
|
377
|
|
|
:class:`lasio.las_items.CurveItem` (not just the data array) |
|
378
|
|
|
|
|
379
|
|
|
''' |
|
380
|
|
|
for curve in self.curves: |
|
381
|
|
|
if curve.mnemonic == mnemonic: |
|
382
|
|
|
return curve |
|
383
|
|
|
|
|
384
|
|
|
def __getitem__(self, key): |
|
385
|
|
|
'''Provide access to curve data. |
|
386
|
|
|
|
|
387
|
|
|
Arguments: |
|
388
|
|
|
key (str, int): either a curve mnemonic or the column index. |
|
389
|
|
|
|
|
390
|
|
|
Returns: |
|
391
|
|
|
1D :class:`numpy.ndarray` (the data for the curve) |
|
392
|
|
|
|
|
393
|
|
|
''' |
|
394
|
|
|
#TODO: If I implement 2D arrays, need to check here for :1 :2 :3 etc. |
|
395
|
|
|
curve_mnemonics = [c.mnemonic for c in self.curves] |
|
396
|
|
|
if isinstance(key, int): |
|
397
|
|
|
return self.curves[key].data |
|
398
|
|
|
elif key in curve_mnemonics: |
|
399
|
|
|
return self.curves[key].data |
|
400
|
|
|
else: |
|
401
|
|
|
raise KeyError('{} not found in curves ({})'.format(key, curve_mnemonics)) |
|
402
|
|
|
|
|
403
|
|
|
def __setitem__(self, key, value): |
|
404
|
|
|
'''Not implemented. |
|
405
|
|
|
|
|
406
|
|
|
It is not possible yet to set curve data via the LASFile's item |
|
407
|
|
|
access shortcut. |
|
408
|
|
|
|
|
409
|
|
|
''' |
|
410
|
|
|
assert NotImplementedError('not yet') |
|
411
|
|
|
|
|
412
|
|
|
def keys(self): |
|
413
|
|
|
'''Return curve mnemonics.''' |
|
414
|
|
|
return [c.mnemonic for c in self.curves] |
|
415
|
|
|
|
|
416
|
|
|
def values(self): |
|
417
|
|
|
'''Return data for each curve.''' |
|
418
|
|
|
return [c.data for c in self.curves] |
|
419
|
|
|
|
|
420
|
|
|
def items(self): |
|
421
|
|
|
'''Return mnemonics and data for all curves.''' |
|
422
|
|
|
return [(c.mnemonic, c.data) for c in self.curves] |
|
423
|
|
|
|
|
424
|
|
|
def iterkeys(self): |
|
425
|
|
|
return iter(list(self.keys())) |
|
426
|
|
|
|
|
427
|
|
|
def itervalues(self): |
|
428
|
|
|
return iter(list(self.values())) |
|
429
|
|
|
|
|
430
|
|
|
def iteritems(self): |
|
431
|
|
|
return iter(list(self.items())) |
|
432
|
|
|
|
|
433
|
|
|
@property |
|
434
|
|
|
def version(self): |
|
435
|
|
|
'''Header information from the Version (~V) section. |
|
436
|
|
|
|
|
437
|
|
|
Returns: |
|
438
|
|
|
:class:`lasio.las_items.SectionItems` object. |
|
439
|
|
|
|
|
440
|
|
|
''' |
|
441
|
|
|
return self.sections['Version'] |
|
442
|
|
|
|
|
443
|
|
|
@version.setter |
|
444
|
|
|
def version(self, section): |
|
445
|
|
|
self.sections['Version'] = section |
|
446
|
|
|
|
|
447
|
|
|
@property |
|
448
|
|
|
def well(self): |
|
449
|
|
|
'''Header information from the Well (~W) section. |
|
450
|
|
|
|
|
451
|
|
|
Returns: |
|
452
|
|
|
:class:`lasio.las_items.SectionItems` object. |
|
453
|
|
|
|
|
454
|
|
|
''' |
|
455
|
|
|
return self.sections['Well'] |
|
456
|
|
|
|
|
457
|
|
|
@well.setter |
|
458
|
|
|
def well(self, section): |
|
459
|
|
|
self.sections['Well'] = section |
|
460
|
|
|
|
|
461
|
|
|
@property |
|
462
|
|
|
def curves(self): |
|
463
|
|
|
'''Curve information and data from the Curves (~C) and data section.. |
|
464
|
|
|
|
|
465
|
|
|
Returns: |
|
466
|
|
|
:class:`lasio.las_items.SectionItems` object. |
|
467
|
|
|
|
|
468
|
|
|
''' |
|
469
|
|
|
return self.sections['Curves'] |
|
470
|
|
|
|
|
471
|
|
|
@curves.setter |
|
472
|
|
|
def curves(self, section): |
|
473
|
|
|
self.sections['Curves'] = section |
|
474
|
|
|
|
|
475
|
|
|
@property |
|
476
|
|
|
def curvesdict(self): |
|
477
|
|
|
'''Curve information and data from the Curves (~C) and data section.. |
|
478
|
|
|
|
|
479
|
|
|
Returns: |
|
480
|
|
|
dict |
|
481
|
|
|
|
|
482
|
|
|
''' |
|
483
|
|
|
d = {} |
|
484
|
|
|
for curve in self.curves: |
|
485
|
|
|
d[curve['mnemonic']] = curve |
|
486
|
|
|
return d |
|
487
|
|
|
|
|
488
|
|
|
@property |
|
489
|
|
|
def params(self): |
|
490
|
|
|
'''Header information from the Parameter (~P) section. |
|
491
|
|
|
|
|
492
|
|
|
Returns: |
|
493
|
|
|
:class:`lasio.las_items.SectionItems` object. |
|
494
|
|
|
|
|
495
|
|
|
''' |
|
496
|
|
|
return self.sections['Parameter'] |
|
497
|
|
|
|
|
498
|
|
|
@params.setter |
|
499
|
|
|
def params(self, section): |
|
500
|
|
|
self.sections['Parameter'] = section |
|
501
|
|
|
|
|
502
|
|
|
@property |
|
503
|
|
|
def other(self): |
|
504
|
|
|
'''Header information from the Other (~O) section. |
|
505
|
|
|
|
|
506
|
|
|
Returns: |
|
507
|
|
|
str |
|
508
|
|
|
|
|
509
|
|
|
''' |
|
510
|
|
|
return self.sections['Other'] |
|
511
|
|
|
|
|
512
|
|
|
@other.setter |
|
513
|
|
|
def other(self, section): |
|
514
|
|
|
self.sections['Other'] = section |
|
515
|
|
|
|
|
516
|
|
|
@property |
|
517
|
|
|
def metadata(self): |
|
518
|
|
|
'''All header information joined together. |
|
519
|
|
|
|
|
520
|
|
|
Returns: |
|
521
|
|
|
:class:`lasio.las_items.SectionItems` object. |
|
522
|
|
|
|
|
523
|
|
|
''' |
|
524
|
|
|
s = SectionItems() |
|
525
|
|
|
for section in self.sections: |
|
526
|
|
|
for item in section: |
|
527
|
|
|
s.append(item) |
|
528
|
|
|
return s |
|
529
|
|
|
|
|
530
|
|
|
@metadata.setter |
|
531
|
|
|
def metadata(self, value): |
|
532
|
|
|
raise NotImplementedError('Set values in the section directly') |
|
533
|
|
|
|
|
534
|
|
|
@property |
|
535
|
|
|
def header(self): |
|
536
|
|
|
'''All header information |
|
537
|
|
|
|
|
538
|
|
|
Returns: |
|
539
|
|
|
dict |
|
540
|
|
|
|
|
541
|
|
|
''' |
|
542
|
|
|
return self.sections |
|
543
|
|
|
|
|
544
|
|
|
def df(self): |
|
545
|
|
|
'''Return data as a :class:`pandas.DataFrame` structure.''' |
|
546
|
|
|
import pandas as pd |
|
547
|
|
|
df = pd.DataFrame(self.data, columns=[c.mnemonic for c in self.curves]) |
|
548
|
|
|
if len(self.curves) > 0: |
|
549
|
|
|
df = df.set_index(self.curves[0].mnemonic) |
|
550
|
|
|
return df |
|
551
|
|
|
|
|
552
|
|
|
@property |
|
553
|
|
|
def data(self): |
|
554
|
|
|
return np.vstack([c.data for c in self.curves]).T |
|
555
|
|
|
|
|
556
|
|
|
@data.setter |
|
557
|
|
|
def data(self, value): |
|
558
|
|
|
return self.set_data(value) |
|
559
|
|
|
|
|
560
|
|
|
def set_data(self, array_like, names=None, truncate=False): |
|
561
|
|
|
'''Set the data for the LAS; actually sets data on individual curves. |
|
562
|
|
|
|
|
563
|
|
|
Arguments: |
|
564
|
|
|
array_like (array_like or :class:`pandas.DataFrame`): 2-D data array |
|
565
|
|
|
|
|
566
|
|
|
Keyword Arguments: |
|
567
|
|
|
names (list, optional): used to replace the names of the existing |
|
568
|
|
|
:class:`lasio.las_items.CurveItem` objects. |
|
569
|
|
|
truncate (bool): remove any columns which are not included in the |
|
570
|
|
|
Curves (~C) section. |
|
571
|
|
|
|
|
572
|
|
|
Note: you can pass a :class:`pandas.DataFrame` to this method. |
|
573
|
|
|
|
|
574
|
|
|
''' |
|
575
|
|
|
try: |
|
576
|
|
|
import pandas as pd |
|
577
|
|
|
except ImportError: |
|
578
|
|
|
pass |
|
579
|
|
|
else: |
|
580
|
|
|
if isinstance(array_like, pd.DataFrame): |
|
581
|
|
|
return self.set_data_from_df( |
|
582
|
|
|
array_like, **dict(names=names, truncate=False)) |
|
583
|
|
|
data = np.asarray(array_like) |
|
584
|
|
|
|
|
585
|
|
|
# Truncate data array if necessary. |
|
586
|
|
|
if truncate: |
|
587
|
|
|
data = data[:, len(self.curves)] |
|
588
|
|
|
|
|
589
|
|
|
# Extend curves list if necessary. |
|
590
|
|
|
while data.shape[1] > len(self.curves): |
|
591
|
|
|
self.curves.append(CurveItem('')) |
|
592
|
|
|
|
|
593
|
|
|
if not names: |
|
594
|
|
|
names = [c.original_mnemonic for c in self.curves] |
|
595
|
|
|
else: |
|
596
|
|
|
# Extend names list if necessary. |
|
597
|
|
|
while len(self.curves) > len(names): |
|
598
|
|
|
names.append('') |
|
599
|
|
|
logger.debug('set_data. names to use: {}'.format(names)) |
|
600
|
|
|
|
|
601
|
|
|
for i, curve in enumerate(self.curves): |
|
602
|
|
|
curve.mnemonic = names[i] |
|
603
|
|
|
curve.data = data[:, i] |
|
604
|
|
|
|
|
605
|
|
|
self.curves.assign_duplicate_suffixes() |
|
606
|
|
|
|
|
607
|
|
|
def set_data_from_df(self, df, **kwargs): |
|
608
|
|
|
'''Set the LAS file data from a :class:`pandas.DataFrame`. |
|
609
|
|
|
|
|
610
|
|
|
Arguments: |
|
611
|
|
|
df (pandas.DataFrame): curve mnemonics are the column names. |
|
612
|
|
|
|
|
613
|
|
|
Keyword arguments are passed to :meth:`lasio.las.LASFile.set_data`. |
|
614
|
|
|
|
|
615
|
|
|
''' |
|
616
|
|
|
df_values = np.vstack([df.index.values, df.values.T]).T |
|
617
|
|
|
if (not 'names' in kwargs) or (not kwargs['names']): |
|
618
|
|
|
kwargs['names'] = [df.index.name] + [str(name) for name in df.columns.values] |
|
619
|
|
|
self.set_data(df_values, **kwargs) |
|
620
|
|
|
|
|
621
|
|
|
@property |
|
622
|
|
|
def index(self): |
|
623
|
|
|
'''Return data from the first column of the LAS file data (depth/time). |
|
624
|
|
|
|
|
625
|
|
|
''' |
|
626
|
|
|
return self.curves[0].data |
|
627
|
|
|
|
|
628
|
|
|
@property |
|
629
|
|
|
def depth_m(self): |
|
630
|
|
|
'''Return the index as metres.''' |
|
631
|
|
|
if self.index_unit == 'M': |
|
632
|
|
|
return self.index |
|
633
|
|
|
elif self.index_unit == 'FT': |
|
634
|
|
|
return self.index * 0.3048 |
|
635
|
|
|
else: |
|
636
|
|
|
raise exceptions.LASUnknownUnitError( |
|
637
|
|
|
'Unit of depth index not known') |
|
638
|
|
|
|
|
639
|
|
|
@property |
|
640
|
|
|
def depth_ft(self): |
|
641
|
|
|
'''Return the index as feet.''' |
|
642
|
|
|
if self.index_unit == 'M': |
|
643
|
|
|
return self.index / 0.3048 |
|
644
|
|
|
elif self.index_unit == 'FT': |
|
645
|
|
|
return self.index |
|
646
|
|
|
else: |
|
647
|
|
|
raise exceptions.LASUnknownUnitError( |
|
648
|
|
|
'Unit of depth index not known') |
|
649
|
|
|
|
|
650
|
|
|
def add_curve_raw(self, mnemonic, data, unit='', descr='', value=''): |
|
651
|
|
|
'''Deprecated. Use append_curve_item() or insert_curve_item() instead.''' |
|
652
|
|
|
return self.append_curve_item(self, mnemonic, data, unit, descr, value) |
|
653
|
|
|
|
|
654
|
|
|
def append_curve_item(self, curve_item): |
|
655
|
|
|
'''Add a CurveItem. |
|
656
|
|
|
|
|
657
|
|
|
Args: |
|
658
|
|
|
curve_item (lasio.CurveItem) |
|
659
|
|
|
|
|
660
|
|
|
''' |
|
661
|
|
|
self.insert_curve_item(len(self.curves), curve_item) |
|
662
|
|
|
|
|
663
|
|
|
def insert_curve_item(self, ix, curve_item): |
|
664
|
|
|
'''Insert a CurveItem. |
|
665
|
|
|
|
|
666
|
|
|
Args: |
|
667
|
|
|
ix (int): position to insert CurveItem i.e. 0 for start |
|
668
|
|
|
curve_item (lasio.CurveItem) |
|
669
|
|
|
|
|
670
|
|
|
''' |
|
671
|
|
|
assert isinstance(curve_item, CurveItem) |
|
672
|
|
|
self.curves.insert(ix, curve_item) |
|
673
|
|
|
|
|
674
|
|
|
def add_curve(self, *args, **kwargs): |
|
675
|
|
|
'''Deprecated. Use append_curve() or insert_curve() instead.''' |
|
676
|
|
|
return self.append_curve(*args, **kwargs) |
|
677
|
|
|
|
|
678
|
|
|
def append_curve(self, mnemonic, data, unit='', descr='', value=''): |
|
679
|
|
|
'''Add a curve. |
|
680
|
|
|
|
|
681
|
|
|
Arguments: |
|
682
|
|
|
mnemonic (str): the curve mnemonic |
|
683
|
|
|
data (1D ndarray): the curve data |
|
684
|
|
|
|
|
685
|
|
|
Keyword Arguments: |
|
686
|
|
|
unit (str): curve unit |
|
687
|
|
|
descr (str): curve description |
|
688
|
|
|
value (int/float/str): value e.g. API code. |
|
689
|
|
|
|
|
690
|
|
|
''' |
|
691
|
|
|
return self.insert_curve(len(self.curves), mnemonic, data, unit, descr, value) |
|
692
|
|
|
|
|
693
|
|
|
def insert_curve(self, ix, mnemonic, data, unit='', descr='', value=''): |
|
694
|
|
|
'''Insert a curve. |
|
695
|
|
|
|
|
696
|
|
|
Arguments: |
|
697
|
|
|
ix (int): position to insert curve at i.e. 0 for start. |
|
698
|
|
|
mnemonic (str): the curve mnemonic |
|
699
|
|
|
data (1D ndarray): the curve data |
|
700
|
|
|
|
|
701
|
|
|
Keyword Arguments: |
|
702
|
|
|
unit (str): curve unit |
|
703
|
|
|
descr (str): curve description |
|
704
|
|
|
value (int/float/str): value e.g. API code. |
|
705
|
|
|
|
|
706
|
|
|
''' |
|
707
|
|
|
curve = CurveItem(mnemonic, unit, value, descr, data) |
|
708
|
|
|
self.insert_curve_item(ix, curve) |
|
709
|
|
|
|
|
710
|
|
|
def delete_curve(self, mnemonic=None, ix=None): |
|
711
|
|
|
'''Delete a curve. |
|
712
|
|
|
|
|
713
|
|
|
Keyword Arguments: |
|
714
|
|
|
ix (int): index of curve in LASFile.curves. |
|
715
|
|
|
mnemonic (str): mnemonic of curve. |
|
716
|
|
|
|
|
717
|
|
|
The index takes precedence over the mnemonic. |
|
718
|
|
|
|
|
719
|
|
|
''' |
|
720
|
|
|
if ix is None: |
|
721
|
|
|
ix = self.curves.keys().index(mnemonic) |
|
722
|
|
|
self.curves.pop(ix) |
|
723
|
|
|
|
|
724
|
|
|
@property |
|
725
|
|
|
def json(self): |
|
726
|
|
|
'''Return object contents as a JSON string.''' |
|
727
|
|
|
obj = OrderedDict() |
|
728
|
|
|
for name, section in self.sections.items(): |
|
729
|
|
|
try: |
|
730
|
|
|
obj[name] = section.json |
|
731
|
|
|
except AttributeError: |
|
732
|
|
|
obj[name] = json.dumps(section) |
|
733
|
|
|
return json.dumps(obj) |
|
734
|
|
|
|
|
735
|
|
|
@json.setter |
|
736
|
|
|
def json(self, value): |
|
737
|
|
|
raise Exception('Cannot set objects from JSON') |
|
738
|
|
|
|
|
739
|
|
|
|
|
740
|
|
|
|
|
741
|
|
|
class Las(LASFile): |
|
742
|
|
|
|
|
743
|
|
|
'''LAS file object. |
|
744
|
|
|
|
|
745
|
|
|
Retained for backwards compatibility. |
|
746
|
|
|
|
|
747
|
|
|
''' |
|
748
|
|
|
pass |
|
749
|
|
|
|
|
750
|
|
|
|
|
751
|
|
|
class JSONEncoder(json.JSONEncoder): |
|
752
|
|
|
|
|
753
|
|
|
def default(self, obj): |
|
754
|
|
|
if isinstance(obj, LASFile): |
|
755
|
|
|
d = {'metadata': {}, |
|
756
|
|
|
'data': {}} |
|
757
|
|
|
for name, section in obj.sections.items(): |
|
758
|
|
|
if isinstance(section, basestring): |
|
759
|
|
|
d['metadata'][name] = section |
|
760
|
|
|
else: |
|
761
|
|
|
d['metadata'][name] = [] |
|
762
|
|
|
for item in section: |
|
763
|
|
|
d['metadata'][name].append(dict(item)) |
|
764
|
|
|
for curve in obj.curves: |
|
765
|
|
|
d['data'][curve.mnemonic] = list(curve.data) |
|
766
|
|
|
return d |
|
767
|
|
|
|