Passed
Push — master ( 6ef80c...2068f7 )
by Doug
23:26
created

GeographicPoint::normaliseLongitude()   A

Complexity

Conditions 3
Paths 4

Size

Total Lines 10
Code Lines 5

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 5
CRAP Score 3.0416

Importance

Changes 0
Metric Value
cc 3
eloc 5
nc 4
nop 1
dl 0
loc 10
rs 10
c 0
b 0
f 0
ccs 5
cts 6
cp 0.8333
crap 3.0416
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord;
10
11
use function abs;
12
use function asinh;
13
use function atan;
14
use function atan2;
15
use function atanh;
16
use function cos;
17
use function cosh;
18
use function count;
19
use DateTime;
20
use DateTimeImmutable;
21
use DateTimeInterface;
22
use function hypot;
23
use function implode;
24
use function is_nan;
25
use function log;
26
use const M_E;
27
use const M_PI;
28
use function max;
29
use PHPCoord\CoordinateOperation\AutoConversion;
30
use PHPCoord\CoordinateOperation\ComplexNumber;
31
use PHPCoord\CoordinateOperation\ConvertiblePoint;
32
use PHPCoord\CoordinateOperation\GeocentricValue;
33
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
34
use PHPCoord\CoordinateOperation\GeographicGrid;
35
use PHPCoord\CoordinateOperation\GeographicValue;
36
use PHPCoord\CoordinateOperation\NADCON5Grid;
37
use PHPCoord\CoordinateOperation\NADCON5Grids;
38
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
39
use PHPCoord\CoordinateReferenceSystem\Compound;
40
use PHPCoord\CoordinateReferenceSystem\Geocentric;
41
use PHPCoord\CoordinateReferenceSystem\Geographic;
42
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
43
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
44
use PHPCoord\CoordinateReferenceSystem\Projected;
0 ignored issues
show
Bug introduced by
The type PHPCoord\CoordinateReferenceSystem\Projected was not found. Maybe you did not declare it correctly or list all dependencies?

The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g. excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:

filter:
    dependency_paths: ["lib/*"]

For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths

Loading history...
45
use PHPCoord\CoordinateReferenceSystem\Vertical;
46
use PHPCoord\CoordinateSystem\Axis;
47
use PHPCoord\CoordinateSystem\Cartesian;
48
use PHPCoord\Datum\Datum;
49
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
50
use PHPCoord\Exception\UnknownAxisException;
51
use PHPCoord\Geometry\BoundingArea;
52
use PHPCoord\UnitOfMeasure\Angle\Angle;
53
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
54
use PHPCoord\UnitOfMeasure\Angle\Degree;
55
use PHPCoord\UnitOfMeasure\Angle\Radian;
56
use PHPCoord\UnitOfMeasure\Length\Length;
57
use PHPCoord\UnitOfMeasure\Length\Metre;
58
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
59
use PHPCoord\UnitOfMeasure\Scale\Scale;
60
use PHPCoord\UnitOfMeasure\Scale\Unity;
61
use function sin;
62
use function sinh;
63
use function sqrt;
64
use function str_replace;
65
use function tan;
66
67
/**
68
 * Coordinate representing a point on an ellipsoid.
69
 */
70
class GeographicPoint extends Point implements ConvertiblePoint
71
{
72
    use AutoConversion;
73
74
    /**
75
     * Latitude.
76
     */
77
    protected Angle $latitude;
78
79
    /**
80
     * Longitude.
81
     */
82
    protected Angle $longitude;
83
84
    /**
85
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
86
     */
87
    protected ?Length $height;
88
89
    /**
90
     * Coordinate reference system.
91
     */
92
    protected Geographic2D|Geographic3D $crs;
93
94
    /**
95
     * Coordinate epoch (date for which the specified coordinates represented this point).
96
     */
97
    protected ?DateTimeImmutable $epoch;
98
99 3422
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
100
    {
101 3422
        if ($crs instanceof Geographic2D && $height !== null) {
102 9
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
103
        }
104
105 3413
        if ($crs instanceof Geographic3D && $height === null) {
106 9
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
107
        }
108
109 3404
        $this->crs = $crs;
110
111 3404
        $latitude = $this->normaliseLatitude($latitude);
112 3404
        $longitude = $this->normaliseLongitude($longitude);
113
114 3404
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
115 3404
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
116
117 3404
        if ($height) {
118 210
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
119
        } else {
120 3269
            $this->height = null;
121
        }
122
123 3404
        if ($epoch instanceof DateTime) {
124 9
            $epoch = DateTimeImmutable::createFromMutable($epoch);
125
        }
126 3404
        $this->epoch = $epoch;
127
    }
128
129
    /**
130
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
131
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
132
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
133
     */
134 3422
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
135
    {
136 3422
        return new static($crs, $latitude, $longitude, $height, $epoch);
137
    }
138
139 2709
    public function getLatitude(): Angle
140
    {
141 2709
        return $this->latitude;
142
    }
143
144 2673
    public function getLongitude(): Angle
145
    {
146 2673
        return $this->longitude;
147
    }
148
149 367
    public function getHeight(): ?Length
150
    {
151 367
        return $this->height;
152
    }
153
154 2262
    public function getCRS(): Geographic
155
    {
156 2262
        return $this->crs;
157
    }
158
159 117
    public function getCoordinateEpoch(): ?DateTimeImmutable
160
    {
161 117
        return $this->epoch;
162
    }
163
164 3404
    protected function normaliseLatitude(Angle $latitude): Angle
165
    {
166 3404
        if ($latitude->asDegrees()->getValue() > 90) {
167
            return new Degree(90);
168
        }
169 3404
        if ($latitude->asDegrees()->getValue() < -90) {
170
            return new Degree(-90);
171
        }
172
173 3404
        return $latitude;
174
    }
175
176 3404
    protected function normaliseLongitude(Angle $longitude): Angle
177
    {
178 3404
        while ($longitude->asDegrees()->getValue() > 180) {
179 9
            $longitude = $longitude->subtract(new Degree(360));
180
        }
181 3404
        while ($longitude->asDegrees()->getValue() <= -180) {
182
            $longitude = $longitude->add(new Degree(360));
183
        }
184
185 3404
        return $longitude;
186
    }
187
188
    /**
189
     * Calculate surface distance between two points.
190
     */
191 162
    public function calculateDistance(Point $to): Length
192
    {
193
        try {
194 162
            if ($to instanceof ConvertiblePoint) {
195 153
                $to = $to->convert($this->crs);
196
            }
197
        } finally {
198 162
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
199 9
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
200
            }
201
202
            /* @var GeographicPoint $to */
203 153
            return static::vincenty($this->asGeographicValue(), $to->asGeographicValue(), $this->getCRS()->getDatum()->getEllipsoid());
204
        }
205
    }
206
207 36
    public function __toString(): string
208
    {
209 36
        $values = [];
210 36
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
211 36
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
212 36
                $values[] = $this->latitude;
213 36
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
214 36
                $values[] = $this->longitude;
215 9
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
216 9
                $values[] = $this->height;
217
            } else {
218
                throw new UnknownAxisException(); // @codeCoverageIgnore
219
            }
220
        }
221
222 36
        return '(' . implode(', ', $values) . ')';
223
    }
224
225
    /**
226
     * Geographic/geocentric conversions
227
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
228
     * 9636 to form a geographic to geographic transformation.
229
     */
230 18
    public function geographicGeocentric(
231
        Geocentric $to
232
    ): GeocentricPoint {
233 18
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
234 18
        $asGeocentric = $geographicValue->asGeocentricValue();
235
236 18
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
237
    }
238
239
    /**
240
     * Coordinate Frame rotation (geog2D/geog3D domain)
241
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
242
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
243
     * between other CRS types.
244
     */
245 72
    public function coordinateFrameRotation(
246
        Geographic2D|Geographic3D $to,
247
        Length $xAxisTranslation,
248
        Length $yAxisTranslation,
249
        Length $zAxisTranslation,
250
        Angle $xAxisRotation,
251
        Angle $yAxisRotation,
252
        Angle $zAxisRotation,
253
        Scale $scaleDifference
254
    ): self {
255 72
        return $this->coordinateFrameMolodenskyBadekas(
256
            $to,
257
            $xAxisTranslation,
258
            $yAxisTranslation,
259
            $zAxisTranslation,
260
            $xAxisRotation,
261
            $yAxisRotation,
262
            $zAxisRotation,
263
            $scaleDifference,
264 72
            new Metre(0),
265 72
            new Metre(0),
266 72
            new Metre(0)
267
        );
268
    }
269
270
    /**
271
     * Molodensky-Badekas (CF geog2D/geog3D domain)
272
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
273
     * opposite rotation convention in geographic 2D domain.
274
     */
275 108
    public function coordinateFrameMolodenskyBadekas(
276
        Geographic2D|Geographic3D $to,
277
        Length $xAxisTranslation,
278
        Length $yAxisTranslation,
279
        Length $zAxisTranslation,
280
        Angle $xAxisRotation,
281
        Angle $yAxisRotation,
282
        Angle $zAxisRotation,
283
        Scale $scaleDifference,
284
        Length $ordinate1OfEvaluationPoint,
285
        Length $ordinate2OfEvaluationPoint,
286
        Length $ordinate3OfEvaluationPoint
287
    ): self {
288 108
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
289 108
        $asGeocentric = $geographicValue->asGeocentricValue();
290
291 108
        $xs = $asGeocentric->getX()->asMetres()->getValue();
292 108
        $ys = $asGeocentric->getY()->asMetres()->getValue();
293 108
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
294 108
        $tx = $xAxisTranslation->asMetres()->getValue();
295 108
        $ty = $yAxisTranslation->asMetres()->getValue();
296 108
        $tz = $zAxisTranslation->asMetres()->getValue();
297 108
        $rx = $xAxisRotation->asRadians()->getValue();
298 108
        $ry = $yAxisRotation->asRadians()->getValue();
299 108
        $rz = $zAxisRotation->asRadians()->getValue();
300 108
        $M = 1 + $scaleDifference->asUnity()->getValue();
301 108
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
302 108
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
303 108
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
304
305 108
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
306 108
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
307 108
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
308 108
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
309 108
        $newGeographic = $newGeocentric->asGeographicValue();
310
311 108
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
312
    }
313
314
    /**
315
     * Position Vector transformation (geog2D/geog3D domain)
316
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
317
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
318
     * operating between other CRS types.
319
     */
320 203
    public function positionVectorTransformation(
321
        Geographic2D|Geographic3D $to,
322
        Length $xAxisTranslation,
323
        Length $yAxisTranslation,
324
        Length $zAxisTranslation,
325
        Angle $xAxisRotation,
326
        Angle $yAxisRotation,
327
        Angle $zAxisRotation,
328
        Scale $scaleDifference
329
    ): self {
330 203
        return $this->positionVectorMolodenskyBadekas(
331
            $to,
332
            $xAxisTranslation,
333
            $yAxisTranslation,
334
            $zAxisTranslation,
335
            $xAxisRotation,
336
            $yAxisRotation,
337
            $zAxisRotation,
338
            $scaleDifference,
339 203
            new Metre(0),
340 203
            new Metre(0),
341 203
            new Metre(0)
342
        );
343
    }
344
345
    /**
346
     * Molodensky-Badekas (PV geog2D/geog3D domain)
347
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
348
     * rotation in geographic 2D/3D domain.
349
     */
350 221
    public function positionVectorMolodenskyBadekas(
351
        Geographic2D|Geographic3D $to,
352
        Length $xAxisTranslation,
353
        Length $yAxisTranslation,
354
        Length $zAxisTranslation,
355
        Angle $xAxisRotation,
356
        Angle $yAxisRotation,
357
        Angle $zAxisRotation,
358
        Scale $scaleDifference,
359
        Length $ordinate1OfEvaluationPoint,
360
        Length $ordinate2OfEvaluationPoint,
361
        Length $ordinate3OfEvaluationPoint
362
    ): self {
363 221
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
364 221
        $asGeocentric = $geographicValue->asGeocentricValue();
365
366 221
        $xs = $asGeocentric->getX()->asMetres()->getValue();
367 221
        $ys = $asGeocentric->getY()->asMetres()->getValue();
368 221
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
369 221
        $tx = $xAxisTranslation->asMetres()->getValue();
370 221
        $ty = $yAxisTranslation->asMetres()->getValue();
371 221
        $tz = $zAxisTranslation->asMetres()->getValue();
372 221
        $rx = $xAxisRotation->asRadians()->getValue();
373 221
        $ry = $yAxisRotation->asRadians()->getValue();
374 221
        $rz = $zAxisRotation->asRadians()->getValue();
375 221
        $M = 1 + $scaleDifference->asUnity()->getValue();
376 221
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
377 221
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
378 221
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
379
380 221
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
381 221
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
382 221
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
383 221
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
384 221
        $newGeographic = $newGeocentric->asGeographicValue();
385
386 221
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
387
    }
388
389
    /**
390
     * Geocentric translations
391
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
392
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
393
     * operating between other CRSs types.
394
     */
395 115
    public function geocentricTranslation(
396
        Geographic2D|Geographic3D $to,
397
        Length $xAxisTranslation,
398
        Length $yAxisTranslation,
399
        Length $zAxisTranslation
400
    ): self {
401 115
        return $this->positionVectorTransformation(
402
            $to,
403
            $xAxisTranslation,
404
            $yAxisTranslation,
405
            $zAxisTranslation,
406 115
            new Radian(0),
407 115
            new Radian(0),
408 115
            new Radian(0),
409 115
            new Unity(0)
410
        );
411
    }
412
413
    /**
414
     * Abridged Molodensky
415
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
416
     * systems, modelled as a set of geocentric translations.
417
     */
418 18
    public function abridgedMolodensky(
419
        Geographic2D|Geographic3D $to,
420
        Length $xAxisTranslation,
421
        Length $yAxisTranslation,
422
        Length $zAxisTranslation,
423
        Length $differenceInSemiMajorAxis,
424
        Scale $differenceInFlattening
425
    ): self {
426 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
427 18
        $latitude = $this->latitude->asRadians()->getValue();
428 18
        $longitude = $this->longitude->asRadians()->getValue();
429 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
430 18
        $tx = $xAxisTranslation->asMetres()->getValue();
431 18
        $ty = $yAxisTranslation->asMetres()->getValue();
432 18
        $tz = $zAxisTranslation->asMetres()->getValue();
433 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
434 18
        $df = $differenceInFlattening->asUnity()->getValue();
435
436 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
437 18
        $e2 = $ellipsoid->getEccentricitySquared();
438
439 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
440 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
441
442 18
        $f = $ellipsoid->getFlattening();
443
444 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
445 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
446 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
447
448 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
449 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
450 18
        $toHeight = $fromHeight + $dHeight;
451
452 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
453
    }
454
455
    /**
456
     * Molodensky
457
     * See Abridged Molodensky.
458
     */
459 18
    public function molodensky(
460
        Geographic2D|Geographic3D $to,
461
        Length $xAxisTranslation,
462
        Length $yAxisTranslation,
463
        Length $zAxisTranslation,
464
        Length $differenceInSemiMajorAxis,
465
        Scale $differenceInFlattening
466
    ): self {
467 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
468 18
        $latitude = $this->latitude->asRadians()->getValue();
469 18
        $longitude = $this->longitude->asRadians()->getValue();
470 18
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
471 18
        $tx = $xAxisTranslation->asMetres()->getValue();
472 18
        $ty = $yAxisTranslation->asMetres()->getValue();
473 18
        $tz = $zAxisTranslation->asMetres()->getValue();
474 18
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
475 18
        $df = $differenceInFlattening->asUnity()->getValue();
476
477 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
478 18
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
479 18
        $e2 = $ellipsoid->getEccentricitySquared();
480
481 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
482 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
483
484 18
        $f = $ellipsoid->getFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
485
486 18
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
487 18
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
488 18
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
489
490 18
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
491 18
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
492 18
        $toHeight = $fromHeight + $dHeight;
493
494 18
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
495
    }
496
497
    /**
498
     * Albers Equal Area.
499
     */
500 18
    public function albersEqualArea(
501
        Projected $to,
502
        Angle $latitudeOfFalseOrigin,
503
        Angle $longitudeOfFalseOrigin,
504
        Angle $latitudeOf1stStandardParallel,
505
        Angle $latitudeOf2ndStandardParallel,
506
        Length $eastingAtFalseOrigin,
507
        Length $northingAtFalseOrigin
508
    ): ProjectedPoint {
509 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
510 18
        $latitude = $this->latitude->asRadians()->getValue();
511 18
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
512 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
513 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
514 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
515 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
516 18
        $e = $ellipsoid->getEccentricity();
517 18
        $e2 = $ellipsoid->getEccentricitySquared();
518
519 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
520 18
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
521
522 18
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
523 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
524 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
525 18
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
526
527 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
528 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
529 18
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
530 18
        $rho = $a * sqrt($C - $n * $alpha) / $n;
531 18
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
532
533 18
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
534 18
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
535
536 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
537
    }
538
539
    /**
540
     * American Polyconic.
541
     */
542 9
    public function americanPolyconic(
543
        Projected $to,
544
        Angle $latitudeOfNaturalOrigin,
545
        Angle $longitudeOfNaturalOrigin,
546
        Length $falseEasting,
547
        Length $falseNorthing
548
    ): ProjectedPoint {
549 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
550 9
        $latitude = $this->latitude->asRadians()->getValue();
551 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
552 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
553 9
        $e = $ellipsoid->getEccentricity();
554 9
        $e2 = $ellipsoid->getEccentricitySquared();
555 9
        $e4 = $e ** 4;
556 9
        $e6 = $e ** 6;
557
558 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
559 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
560
561 9
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
562
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
563
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
564
        } else {
565 9
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
566 9
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
567
568 9
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
569 9
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
570
        }
571
572 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
573
    }
574
575
    /**
576
     * Bonne.
577
     */
578 9
    public function bonne(
579
        Projected $to,
580
        Angle $latitudeOfNaturalOrigin,
581
        Angle $longitudeOfNaturalOrigin,
582
        Length $falseEasting,
583
        Length $falseNorthing
584
    ): ProjectedPoint {
585 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
586 9
        $latitude = $this->latitude->asRadians()->getValue();
587 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
588 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
589 9
        $e = $ellipsoid->getEccentricity();
590 9
        $e2 = $ellipsoid->getEccentricitySquared();
591 9
        $e4 = $e ** 4;
592 9
        $e6 = $e ** 6;
593
594 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
595 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
596
597 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
598 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
599
600 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
601 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
602
603 9
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
604 9
        $northing = $falseNorthing->asMetres()->getValue() + (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
605
606 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
607
    }
608
609
    /**
610
     * Bonne South Orientated.
611
     */
612 9
    public function bonneSouthOrientated(
613
        Projected $to,
614
        Angle $latitudeOfNaturalOrigin,
615
        Angle $longitudeOfNaturalOrigin,
616
        Length $falseEasting,
617
        Length $falseNorthing
618
    ): ProjectedPoint {
619 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
620 9
        $latitude = $this->latitude->asRadians()->getValue();
621 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
622 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
623 9
        $e = $ellipsoid->getEccentricity();
624 9
        $e2 = $ellipsoid->getEccentricitySquared();
625 9
        $e4 = $e ** 4;
626 9
        $e6 = $e ** 6;
627
628 9
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
629 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
630
631 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
632 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
633
634 9
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
635 9
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
636
637 9
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
638 9
        $southing = $falseNorthing->asMetres()->getValue() - (($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)));
639
640 9
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
641
    }
642
643
    /**
644
     * Cassini-Soldner.
645
     */
646 9
    public function cassiniSoldner(
647
        Projected $to,
648
        Angle $latitudeOfNaturalOrigin,
649
        Angle $longitudeOfNaturalOrigin,
650
        Length $falseEasting,
651
        Length $falseNorthing
652
    ): ProjectedPoint {
653 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
654 9
        $latitude = $this->latitude->asRadians()->getValue();
655 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
656 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
657 9
        $e = $ellipsoid->getEccentricity();
658 9
        $e2 = $ellipsoid->getEccentricitySquared();
659 9
        $e4 = $e ** 4;
660 9
        $e6 = $e ** 6;
661
662 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
663 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
664
665 9
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
666 9
        $T = tan($latitude) ** 2;
667 9
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
668 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
669 9
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
670
671 9
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
672 9
        $northing = $falseNorthing->asMetres()->getValue() + $X;
673
674 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
675
    }
676
677
    /**
678
     * Hyperbolic Cassini-Soldner.
679
     */
680 18
    public function hyperbolicCassiniSoldner(
681
        Projected $to,
682
        Angle $latitudeOfNaturalOrigin,
683
        Angle $longitudeOfNaturalOrigin,
684
        Length $falseEasting,
685
        Length $falseNorthing
686
    ): ProjectedPoint {
687 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
688 18
        $latitude = $this->latitude->asRadians()->getValue();
689 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
690 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
691 18
        $e = $ellipsoid->getEccentricity();
692 18
        $e2 = $ellipsoid->getEccentricitySquared();
693 18
        $e4 = $e ** 4;
694 18
        $e6 = $e ** 6;
695
696 18
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
697 18
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
698
699 18
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
700 18
        $T = tan($latitude) ** 2;
701 18
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
702 18
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
703 18
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
704 18
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
705
706 18
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
707 18
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
708
709 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
710
    }
711
712
    /**
713
     * Colombia Urban.
714
     */
715 9
    public function columbiaUrban(
716
        Projected $to,
717
        Angle $latitudeOfNaturalOrigin,
718
        Angle $longitudeOfNaturalOrigin,
719
        Length $falseEasting,
720
        Length $falseNorthing,
721
        Length $projectionPlaneOriginHeight
722
    ): ProjectedPoint {
723 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
724 9
        $latitude = $this->latitude->asRadians()->getValue();
725 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
726 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
727 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
728 9
        $e2 = $ellipsoid->getEccentricitySquared();
729
730 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
731 9
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
732
733 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
734 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
735
736 9
        $A = 1 + $heightOrigin / $nuOrigin;
737 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
738 9
        $G = 1 + $heightOrigin / $rhoMid;
739
740 9
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
741 9
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
742
743 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
744
    }
745
746
    /**
747
     * Equal Earth.
748
     */
749 9
    public function equalEarth(
750
        Projected $to,
751
        Angle $longitudeOfNaturalOrigin,
752
        Length $falseEasting,
753
        Length $falseNorthing
754
    ): ProjectedPoint {
755 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
756 9
        $latitude = $this->latitude->asRadians()->getValue();
757 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
758 9
        $e = $ellipsoid->getEccentricity();
759 9
        $e2 = $ellipsoid->getEccentricitySquared();
760
761 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
762 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
763 9
        $beta = self::asin($q / $qP);
764 9
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
765 9
        $Rq = $a * sqrt($qP / 2);
766
767 9
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
768 9
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
769
770 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
771
    }
772
773
    /**
774
     * Equidistant Cylindrical
775
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
776
     */
777 9
    public function equidistantCylindrical(
778
        Projected $to,
779
        Angle $latitudeOf1stStandardParallel,
780
        Angle $longitudeOfNaturalOrigin,
781
        Length $falseEasting,
782
        Length $falseNorthing
783
    ): ProjectedPoint {
784 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
785 9
        $latitude = $this->latitude->asRadians()->getValue();
786 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
787 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
788 9
        $e = $ellipsoid->getEccentricity();
789 9
        $e2 = $ellipsoid->getEccentricitySquared();
790 9
        $e4 = $e ** 4;
791 9
        $e6 = $e ** 6;
792 9
        $e8 = $e ** 8;
793 9
        $e10 = $e ** 10;
794 9
        $e12 = $e ** 12;
795 9
        $e14 = $e ** 14;
796
797 9
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
798
799 9
        $M = $a * (
800 9
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
801 9
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
802 9
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
803 9
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
804 9
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
805 9
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
806 9
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
807 9
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
808
        );
809
810 9
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
811 9
        $northing = $falseNorthing->asMetres()->getValue() + $M;
812
813 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
814
    }
815
816
    /**
817
     * Guam Projection
818
     * Simplified form of Oblique Azimuthal Equidistant projection method.
819
     */
820 9
    public function guamProjection(
821
        Projected $to,
822
        Angle $latitudeOfNaturalOrigin,
823
        Angle $longitudeOfNaturalOrigin,
824
        Length $falseEasting,
825
        Length $falseNorthing
826
    ): ProjectedPoint {
827 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
828 9
        $latitude = $this->latitude->asRadians()->getValue();
829 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
830 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
831 9
        $e = $ellipsoid->getEccentricity();
832 9
        $e2 = $ellipsoid->getEccentricitySquared();
833 9
        $e4 = $e ** 4;
834 9
        $e6 = $e ** 6;
835
836 9
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
837 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
838 9
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
839
840 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
841 9
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
842
843 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
844
    }
845
846
    /**
847
     * Krovak.
848
     */
849 36
    public function krovak(
850
        Projected $to,
851
        Angle $latitudeOfProjectionCentre,
852
        Angle $longitudeOfOrigin,
853
        Angle $coLatitudeOfConeAxis,
854
        Angle $latitudeOfPseudoStandardParallel,
855
        Scale $scaleFactorOnPseudoStandardParallel,
856
        Length $falseEasting,
857
        Length $falseNorthing
858
    ): ProjectedPoint {
859 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
860 36
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
861 36
        $latitude = $this->latitude->asRadians()->getValue();
862 36
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
863 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
864 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
865 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
866 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
867 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
868 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
869 36
        $e = $ellipsoid->getEccentricity();
870 36
        $e2 = $ellipsoid->getEccentricitySquared();
871
872 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
873 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
874 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
875 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
876 36
        $n = sin($latitudeP);
877 36
        $rO = $kP * $A / tan($latitudeP);
878
879 36
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
880 36
        $V = $B * ($longitudeO - $longitude);
881 36
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
882 36
        $D = atan2(cos($U) * sin($V) / cos($T), ((cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))));
883 36
        $theta = $n * $D;
884 36
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
885 36
        $X = $r * cos($theta);
886 36
        $Y = $r * sin($theta);
887
888 36
        $westing = $Y + $falseEasting->asMetres()->getValue();
889 36
        $southing = $X + $falseNorthing->asMetres()->getValue();
890
891 36
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
892
    }
893
894
    /**
895
     * Krovak Modified
896
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
897
     * to be a map projection.
898
     */
899 18
    public function krovakModified(
900
        Projected $to,
901
        Angle $latitudeOfProjectionCentre,
902
        Angle $longitudeOfOrigin,
903
        Angle $coLatitudeOfConeAxis,
904
        Angle $latitudeOfPseudoStandardParallel,
905
        Scale $scaleFactorOnPseudoStandardParallel,
906
        Length $falseEasting,
907
        Length $falseNorthing,
908
        Length $ordinate1OfEvaluationPoint,
909
        Length $ordinate2OfEvaluationPoint,
910
        Coefficient $C1,
911
        Coefficient $C2,
912
        Coefficient $C3,
913
        Coefficient $C4,
914
        Coefficient $C5,
915
        Coefficient $C6,
916
        Coefficient $C7,
917
        Coefficient $C8,
918
        Coefficient $C9,
919
        Coefficient $C10
920
    ): ProjectedPoint {
921 18
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
922
923 18
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
924 18
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
925 18
        $c1 = $C1->asUnity()->getValue();
926 18
        $c2 = $C2->asUnity()->getValue();
927 18
        $c3 = $C3->asUnity()->getValue();
928 18
        $c4 = $C4->asUnity()->getValue();
929 18
        $c5 = $C5->asUnity()->getValue();
930 18
        $c6 = $C6->asUnity()->getValue();
931 18
        $c7 = $C7->asUnity()->getValue();
932 18
        $c8 = $C8->asUnity()->getValue();
933 18
        $c9 = $C9->asUnity()->getValue();
934 18
        $c10 = $C10->asUnity()->getValue();
935
936 18
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
937 18
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
938
939 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
940 18
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
941
942 18
        $westing += $falseEasting->asMetres()->getValue() - $dY;
943 18
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
944
945 18
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
946
    }
947
948
    /**
949
     * Lambert Azimuthal Equal Area
950
     * This is the ellipsoidal form of the projection.
951
     */
952 9
    public function lambertAzimuthalEqualArea(
953
        Projected $to,
954
        Angle $latitudeOfNaturalOrigin,
955
        Angle $longitudeOfNaturalOrigin,
956
        Length $falseEasting,
957
        Length $falseNorthing
958
    ): ProjectedPoint {
959 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
960 9
        $latitude = $this->latitude->asRadians()->getValue();
961 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
962 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
963 9
        $e = $ellipsoid->getEccentricity();
964 9
        $e2 = $ellipsoid->getEccentricitySquared();
965
966 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
967 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
968 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
969 9
        $beta = self::asin($q / $qP);
970 9
        $betaO = self::asin($qO / $qP);
971 9
        $Rq = $a * sqrt($qP / 2);
972 9
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
973 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
974
975 9
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
976 9
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
977
978 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
979
    }
980
981
    /**
982
     * Lambert Azimuthal Equal Area (Spherical)
983
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
984
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
985
     * methods.
986
     */
987 9
    public function lambertAzimuthalEqualAreaSpherical(
988
        Projected $to,
989
        Angle $latitudeOfNaturalOrigin,
990
        Angle $longitudeOfNaturalOrigin,
991
        Length $falseEasting,
992
        Length $falseNorthing
993
    ): ProjectedPoint {
994 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
995 9
        $latitude = $this->latitude->asRadians()->getValue();
996 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
997 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
998
999 9
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1000
1001 9
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1002 9
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1003
1004 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1005
    }
1006
1007
    /**
1008
     * Lambert Conic Conformal (1SP).
1009
     */
1010 351
    public function lambertConicConformal1SP(
1011
        Projected $to,
1012
        Angle $latitudeOfNaturalOrigin,
1013
        Angle $longitudeOfNaturalOrigin,
1014
        Scale $scaleFactorAtNaturalOrigin,
1015
        Length $falseEasting,
1016
        Length $falseNorthing
1017
    ): ProjectedPoint {
1018 351
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1019 351
        $latitude = $this->latitude->asRadians()->getValue();
1020 351
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1021 351
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1022 351
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1023 351
        $e = $ellipsoid->getEccentricity();
1024 351
        $e2 = $ellipsoid->getEccentricitySquared();
1025
1026 351
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1027 351
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1028 351
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1029 351
        $n = sin($latitudeOrigin);
1030 351
        $F = $mO / ($n * $tO ** $n);
1031 351
        $rO = $a * $F * $tO ** $n * $kO;
1032 351
        $r = $a * $F * $t ** $n * $kO;
1033 351
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1034
1035 351
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1036 351
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1037
1038 351
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1039
    }
1040
1041
    /**
1042
     * Lambert Conic Conformal (1SP) Variant B.
1043
     */
1044
    public function lambertConicConformal1SPVariantB(
1045
        Projected $to,
1046
        Angle $latitudeOfNaturalOrigin,
1047
        Scale $scaleFactorAtNaturalOrigin,
1048
        Angle $latitudeOfFalseOrigin,
1049
        Angle $longitudeOfFalseOrigin,
1050
        Length $eastingAtFalseOrigin,
1051
        Length $northingAtFalseOrigin
1052
    ): ProjectedPoint {
1053
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1054
        $latitude = $this->latitude->asRadians()->getValue();
1055
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1056
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1057
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1058
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1059
        $e = $ellipsoid->getEccentricity();
1060
        $e2 = $ellipsoid->getEccentricitySquared();
1061
1062
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1063
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1064
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1065
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1066
        $n = sin($latitudeNaturalOrigin);
1067
        $F = $mO / ($n * $tO ** $n);
1068
        $rF = $a * $F * $tF ** $n * $kO;
1069
        $r = $a * $F * $t ** $n * $kO;
1070
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1071
1072
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1073
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1074
1075
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1076
    }
1077
1078
    /**
1079
     * Lambert Conic Conformal (2SP Belgium)
1080
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1081
     * with appropriately modified parameter values.
1082
     */
1083 9
    public function lambertConicConformal2SPBelgium(
1084
        Projected $to,
1085
        Angle $latitudeOfFalseOrigin,
1086
        Angle $longitudeOfFalseOrigin,
1087
        Angle $latitudeOf1stStandardParallel,
1088
        Angle $latitudeOf2ndStandardParallel,
1089
        Length $eastingAtFalseOrigin,
1090
        Length $northingAtFalseOrigin
1091
    ): ProjectedPoint {
1092 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1093 9
        $latitude = $this->latitude->asRadians()->getValue();
1094 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1095 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1096 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1097 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1098 9
        $e = $ellipsoid->getEccentricity();
1099 9
        $e2 = $ellipsoid->getEccentricitySquared();
1100
1101 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1102 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1103 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1104 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1105 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1106 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1107 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1108 9
        $F = $m1 / ($n * $t1 ** $n);
1109 9
        $r = $a * $F * $t ** $n;
1110 9
        $rF = $a * $F * $tF ** $n;
1111 9
        if (is_nan($rF)) {
1112 9
            $rF = 0;
1113
        }
1114 9
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1115
1116 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1117 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1118
1119 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1120
    }
1121
1122
    /**
1123
     * Lambert Conic Conformal (2SP Michigan).
1124
     */
1125 9
    public function lambertConicConformal2SPMichigan(
1126
        Projected $to,
1127
        Angle $latitudeOfFalseOrigin,
1128
        Angle $longitudeOfFalseOrigin,
1129
        Angle $latitudeOf1stStandardParallel,
1130
        Angle $latitudeOf2ndStandardParallel,
1131
        Length $eastingAtFalseOrigin,
1132
        Length $northingAtFalseOrigin,
1133
        Scale $ellipsoidScalingFactor
1134
    ): ProjectedPoint {
1135 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1136 9
        $latitude = $this->latitude->asRadians()->getValue();
1137 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1138 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1139 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1140 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1141 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1142 9
        $e = $ellipsoid->getEccentricity();
1143 9
        $e2 = $ellipsoid->getEccentricitySquared();
1144
1145 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1146 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1147 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1148 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1149 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1150 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1151 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1152 9
        $F = $m1 / ($n * $t1 ** $n);
1153 9
        $r = $a * $K * $F * $t ** $n;
1154 9
        $rF = $a * $K * $F * $tF ** $n;
1155 9
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1156
1157 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1158 9
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1159
1160 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1161
    }
1162
1163
    /**
1164
     * Lambert Conic Conformal (2SP).
1165
     */
1166 370
    public function lambertConicConformal2SP(
1167
        Projected $to,
1168
        Angle $latitudeOfFalseOrigin,
1169
        Angle $longitudeOfFalseOrigin,
1170
        Angle $latitudeOf1stStandardParallel,
1171
        Angle $latitudeOf2ndStandardParallel,
1172
        Length $eastingAtFalseOrigin,
1173
        Length $northingAtFalseOrigin
1174
    ): ProjectedPoint {
1175 370
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1176 370
        $latitude = $this->latitude->asRadians()->getValue();
1177 370
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1178 370
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1179 370
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1180 370
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1181 370
        $e = $ellipsoid->getEccentricity();
1182 370
        $e2 = $ellipsoid->getEccentricitySquared();
1183
1184 370
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1185 370
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1186 370
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1187 370
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1188 370
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1189 370
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1190 370
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1191 370
        $F = $m1 / ($n * $t1 ** $n);
1192 370
        $r = $a * $F * $t ** $n;
1193 370
        $rF = $a * $F * $tF ** $n;
1194 370
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1195
1196 370
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1197 370
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1198
1199 370
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1200
    }
1201
1202
    /**
1203
     * Lambert Conic Conformal (West Orientated).
1204
     */
1205
    public function lambertConicConformalWestOrientated(
1206
        Projected $to,
1207
        Angle $latitudeOfNaturalOrigin,
1208
        Angle $longitudeOfNaturalOrigin,
1209
        Scale $scaleFactorAtNaturalOrigin,
1210
        Length $falseEasting,
1211
        Length $falseNorthing
1212
    ): ProjectedPoint {
1213
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1214
        $latitude = $this->latitude->asRadians()->getValue();
1215
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1216
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1217
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1218
        $e = $ellipsoid->getEccentricity();
1219
        $e2 = $ellipsoid->getEccentricitySquared();
1220
1221
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1222
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1223
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1224
        $n = sin($latitudeOrigin);
1225
        $F = $mO / ($n * $tO ** $n);
1226
        $rO = $a * $F * $tO ** $n ** $kO;
1227
        $r = $a * $F * $t ** $n ** $kO;
1228
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1229
1230
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1231
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1232
1233
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1234
    }
1235
1236
    /**
1237
     * Lambert Conic Near-Conformal
1238
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1239
     * series expansion of the projection formulae.
1240
     */
1241 9
    public function lambertConicNearConformal(
1242
        Projected $to,
1243
        Angle $latitudeOfNaturalOrigin,
1244
        Angle $longitudeOfNaturalOrigin,
1245
        Scale $scaleFactorAtNaturalOrigin,
1246
        Length $falseEasting,
1247
        Length $falseNorthing
1248
    ): ProjectedPoint {
1249 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1250 9
        $latitude = $this->latitude->asRadians()->getValue();
1251 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1252 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1253 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1254 9
        $e2 = $ellipsoid->getEccentricitySquared();
1255 9
        $f = $ellipsoid->getFlattening();
1256
1257 9
        $n = $f / (2 - $f);
1258 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1259 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1260 9
        $A = 1 / (6 * $rhoO * $nuO);
1261 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1262 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1263 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1264 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1265 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1266 9
        $rO = $kO * $nuO / tan($latitudeOrigin);
1267 9
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1268 9
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1269 9
        $m = $s - $sO;
1270 9
        $M = $kO * ($m + $A * $m ** 3);
1271 9
        $r = $rO - $M;
1272 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1273
1274 9
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1275 9
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1276
1277 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1278
    }
1279
1280
    /**
1281
     * Lambert Cylindrical Equal Area
1282
     * This is the ellipsoidal form of the projection.
1283
     */
1284 9
    public function lambertCylindricalEqualArea(
1285
        Projected $to,
1286
        Angle $latitudeOf1stStandardParallel,
1287
        Angle $longitudeOfNaturalOrigin,
1288
        Length $falseEasting,
1289
        Length $falseNorthing
1290
    ): ProjectedPoint {
1291 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1292 9
        $latitude = $this->latitude->asRadians()->getValue();
1293 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1294 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1295 9
        $e = $ellipsoid->getEccentricity();
1296 9
        $e2 = $ellipsoid->getEccentricitySquared();
1297
1298 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1299 9
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1300
1301 9
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1302 9
        $y = $a * $q / (2 * $k);
1303
1304 9
        $easting = $falseEasting->asMetres()->getValue() + $x;
1305 9
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1306
1307 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1308
    }
1309
1310
    /**
1311
     * Modified Azimuthal Equidistant
1312
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1313
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1314
     */
1315 9
    public function modifiedAzimuthalEquidistant(
1316
        Projected $to,
1317
        Angle $latitudeOfNaturalOrigin,
1318
        Angle $longitudeOfNaturalOrigin,
1319
        Length $falseEasting,
1320
        Length $falseNorthing
1321
    ): ProjectedPoint {
1322 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1323 9
        $latitude = $this->latitude->asRadians()->getValue();
1324 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1325 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1326 9
        $e = $ellipsoid->getEccentricity();
1327 9
        $e2 = $ellipsoid->getEccentricitySquared();
1328
1329 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1330 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1331 9
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1332 9
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), (cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1333 9
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1334 9
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1335
1336 9
        if (sin($alpha) === 0.0) {
1337
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1338
        } else {
1339 9
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1340
        }
1341
1342 9
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1343
1344 9
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1345 9
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1346
1347 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1348
    }
1349
1350
    /**
1351
     * Oblique Stereographic
1352
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1353
     * Projections - A Working Manual" by John P. Snyder.
1354
     */
1355 9
    public function obliqueStereographic(
1356
        Projected $to,
1357
        Angle $latitudeOfNaturalOrigin,
1358
        Angle $longitudeOfNaturalOrigin,
1359
        Scale $scaleFactorAtNaturalOrigin,
1360
        Length $falseEasting,
1361
        Length $falseNorthing
1362
    ): ProjectedPoint {
1363 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1364 9
        $latitude = $this->latitude->asRadians()->getValue();
1365 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1366 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1367 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1368 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1369 9
        $e = $ellipsoid->getEccentricity();
1370 9
        $e2 = $ellipsoid->getEccentricitySquared();
1371
1372 9
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1373 9
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1374 9
        $R = sqrt($rhoOrigin * $nuOrigin);
1375
1376 9
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1377 9
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1378 9
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1379 9
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1380 9
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1381 9
        $w2 = $c * $w1;
1382 9
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1383
1384 9
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1385
1386 9
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1387 9
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1388 9
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1389 9
        $chi = self::asin(($w - 1) / ($w + 1));
1390
1391 9
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1392
1393 9
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1394 9
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1395
1396 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1397
    }
1398
1399
    /**
1400
     * Polar Stereographic (variant A)
1401
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1402
     */
1403 9
    public function polarStereographicVariantA(
1404
        Projected $to,
1405
        Angle $latitudeOfNaturalOrigin,
1406
        Angle $longitudeOfNaturalOrigin,
1407
        Scale $scaleFactorAtNaturalOrigin,
1408
        Length $falseEasting,
1409
        Length $falseNorthing
1410
    ): ProjectedPoint {
1411 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1412 9
        $latitude = $this->latitude->asRadians()->getValue();
1413 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1414 9
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1415 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1416 9
        $e = $ellipsoid->getEccentricity();
1417
1418 9
        if ($latitudeOrigin < 0) {
1419
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1420
        } else {
1421 9
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1422
        }
1423 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1424
1425 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1426 9
        $dE = $rho * sin($theta);
1427 9
        $dN = $rho * cos($theta);
1428
1429 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1430 9
        if ($latitudeOrigin < 0) {
1431
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1432
        } else {
1433 9
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1434
        }
1435
1436 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1437
    }
1438
1439
    /**
1440
     * Polar Stereographic (variant B).
1441
     */
1442 9
    public function polarStereographicVariantB(
1443
        Projected $to,
1444
        Angle $latitudeOfStandardParallel,
1445
        Angle $longitudeOfOrigin,
1446
        Length $falseEasting,
1447
        Length $falseNorthing
1448
    ): ProjectedPoint {
1449 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1450 9
        $latitude = $this->latitude->asRadians()->getValue();
1451 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1452 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1453 9
        $e = $ellipsoid->getEccentricity();
1454 9
        $e2 = $ellipsoid->getEccentricitySquared();
1455
1456 9
        if ($firstStandardParallel < 0) {
1457 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1458 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1459
        } else {
1460
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1461
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1462
        }
1463 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1464 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1465
1466 9
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1467
1468 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1469 9
        $dE = $rho * sin($theta);
1470 9
        $dN = $rho * cos($theta);
1471
1472 9
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1473 9
        if ($firstStandardParallel < 0) {
1474 9
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1475
        } else {
1476
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1477
        }
1478
1479 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1480
    }
1481
1482
    /**
1483
     * Polar Stereographic (variant C).
1484
     */
1485 9
    public function polarStereographicVariantC(
1486
        Projected $to,
1487
        Angle $latitudeOfStandardParallel,
1488
        Angle $longitudeOfOrigin,
1489
        Length $eastingAtFalseOrigin,
1490
        Length $northingAtFalseOrigin
1491
    ): ProjectedPoint {
1492 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1493 9
        $latitude = $this->latitude->asRadians()->getValue();
1494 9
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1495 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1496 9
        $e = $ellipsoid->getEccentricity();
1497 9
        $e2 = $ellipsoid->getEccentricitySquared();
1498
1499 9
        if ($firstStandardParallel < 0) {
1500 9
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1501 9
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1502
        } else {
1503
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1504
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1505
        }
1506 9
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1507
1508 9
        $rhoF = $a * $mF;
1509 9
        $rho = $rhoF * $t / $tF;
1510
1511 9
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1512 9
        $dE = $rho * sin($theta);
1513 9
        $dN = $rho * cos($theta);
1514
1515 9
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1516 9
        if ($firstStandardParallel < 0) {
1517 9
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1518
        } else {
1519
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1520
        }
1521
1522 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1523
    }
1524
1525
    /**
1526
     * Popular Visualisation Pseudo Mercator
1527
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1528
     */
1529 9
    public function popularVisualisationPseudoMercator(
1530
        Projected $to,
1531
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1531
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1532
        Angle $longitudeOfNaturalOrigin,
1533
        Length $falseEasting,
1534
        Length $falseNorthing
1535
    ): ProjectedPoint {
1536 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1537 9
        $latitude = $this->latitude->asRadians()->getValue();
1538 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1539
1540 9
        $easting = $falseEasting->asMetres()->getValue() + $a * ($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue());
1541 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1542
1543 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1544
    }
1545
1546
    /**
1547
     * Mercator (variant A)
1548
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1549
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1550
     * completeness in CRS labelling.
1551
     */
1552 18
    public function mercatorVariantA(
1553
        Projected $to,
1554
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1554
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1555
        Angle $longitudeOfNaturalOrigin,
1556
        Scale $scaleFactorAtNaturalOrigin,
1557
        Length $falseEasting,
1558
        Length $falseNorthing
1559
    ): ProjectedPoint {
1560 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1561 18
        $latitude = $this->latitude->asRadians()->getValue();
1562 18
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1563
1564 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1565 18
        $e = $ellipsoid->getEccentricity();
1566
1567 18
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1568 18
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1569
1570 18
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1571
    }
1572
1573
    /**
1574
     * Mercator (variant B)
1575
     * Used for most nautical charts.
1576
     */
1577 9
    public function mercatorVariantB(
1578
        Projected $to,
1579
        Angle $latitudeOf1stStandardParallel,
1580
        Angle $longitudeOfNaturalOrigin,
1581
        Length $falseEasting,
1582
        Length $falseNorthing
1583
    ): ProjectedPoint {
1584 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1585 9
        $latitude = $this->latitude->asRadians()->getValue();
1586 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1587 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1588 9
        $e = $ellipsoid->getEccentricity();
1589 9
        $e2 = $ellipsoid->getEccentricitySquared();
1590
1591 9
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1592
1593 9
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1594 9
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1595
1596 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1597
    }
1598
1599
    /**
1600
     * Longitude rotation
1601
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1602
     * value to the longitude value of the point in the source system.
1603
     */
1604 27
    public function longitudeRotation(
1605
        Geographic2D|Geographic3D $to,
1606
        Angle $longitudeOffset
1607
    ): self {
1608 27
        $newLongitude = $this->longitude->add($longitudeOffset);
1609
1610 27
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1611
    }
1612
1613
    /**
1614
     * Hotine Oblique Mercator (variant A).
1615
     */
1616 9
    public function obliqueMercatorHotineVariantA(
1617
        Projected $to,
1618
        Angle $latitudeOfProjectionCentre,
1619
        Angle $longitudeOfProjectionCentre,
1620
        Angle $azimuthOfInitialLine,
1621
        Angle $angleFromRectifiedToSkewGrid,
1622
        Scale $scaleFactorOnInitialLine,
1623
        Length $falseEasting,
1624
        Length $falseNorthing
1625
    ): ProjectedPoint {
1626 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1627 9
        $latitude = $this->latitude->asRadians()->getValue();
1628 9
        $longitude = $this->longitude->asRadians()->getValue();
1629 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1630 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1631 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1632 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1633 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1634 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1635 9
        $e = $ellipsoid->getEccentricity();
1636 9
        $e2 = $ellipsoid->getEccentricitySquared();
1637
1638 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1639 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1640 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1641 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1642 9
        $DD = max(1, $D ** 2);
1643 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1644 9
        $H = $F * ($tO) ** $B;
1645 9
        $G = ($F - 1 / $F) / 2;
1646 9
        $gammaO = self::asin(sin($alphaC) / $D);
1647 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1648
1649 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1650 9
        $Q = $H / $t ** $B;
1651 9
        $S = ($Q - 1 / $Q) / 2;
1652 9
        $T = ($Q + 1 / $Q) / 2;
1653 9
        $V = sin($B * ($longitude - $lonO));
1654 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1655 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1656 9
        $u = $A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B;
1657
1658 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1659 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1660
1661 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1662
    }
1663
1664
    /**
1665
     * Hotine Oblique Mercator (variant B).
1666
     */
1667 9
    public function obliqueMercatorHotineVariantB(
1668
        Projected $to,
1669
        Angle $latitudeOfProjectionCentre,
1670
        Angle $longitudeOfProjectionCentre,
1671
        Angle $azimuthOfInitialLine,
1672
        Angle $angleFromRectifiedToSkewGrid,
1673
        Scale $scaleFactorOnInitialLine,
1674
        Length $eastingAtProjectionCentre,
1675
        Length $northingAtProjectionCentre
1676
    ): ProjectedPoint {
1677 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1678 9
        $latitude = $this->latitude->asRadians()->getValue();
1679 9
        $longitude = $this->longitude->asRadians()->getValue();
1680 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1681 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1682 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1683 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1684 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1685 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1686 9
        $e = $ellipsoid->getEccentricity();
1687 9
        $e2 = $ellipsoid->getEccentricitySquared();
1688
1689 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1690 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1691 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1692 9
        $D = $B * sqrt((1 - $e2)) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1693 9
        $DD = max(1, $D ** 2);
1694 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1695 9
        $H = $F * ($tO) ** $B;
1696 9
        $G = ($F - 1 / $F) / 2;
1697 9
        $gammaO = self::asin(sin($alphaC) / $D);
1698 9
        $lonO = $lonC - (self::asin($G * tan($gammaO))) / $B;
1699 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1700 9
        if ($alphaC === M_PI / 2) {
1701
            $uC = $A * ($lonC - $lonO);
1702
        } else {
1703 9
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1704
        }
1705
1706 9
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1707 9
        $Q = $H / $t ** $B;
1708 9
        $S = ($Q - 1 / $Q) / 2;
1709 9
        $T = ($Q + 1 / $Q) / 2;
1710 9
        $V = sin($B * ($longitude - $lonO));
1711 9
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1712 9
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1713
1714 9
        if ($alphaC === M_PI / 2) {
1715
            if ($longitude === $lonC) {
1716
                $u = 0;
1717
            } else {
1718
                $u = ($A * atan(($S * cos($gammaO) + $V * sin($gammaO)) / cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC) * static::sign($lonC - $longitude));
1719
            }
1720
        } else {
1721 9
            $u = ($A * atan2(($S * cos($gammaO) + $V * sin($gammaO)), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1722
        }
1723
1724 9
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1725 9
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1726
1727 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1728
    }
1729
1730
    /**
1731
     * Laborde Oblique Mercator.
1732
     */
1733 9
    public function obliqueMercatorLaborde(
1734
        Projected $to,
1735
        Angle $latitudeOfProjectionCentre,
1736
        Angle $longitudeOfProjectionCentre,
1737
        Angle $azimuthOfInitialLine,
1738
        Scale $scaleFactorOnInitialLine,
1739
        Length $falseEasting,
1740
        Length $falseNorthing
1741
    ): ProjectedPoint {
1742 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1743 9
        $latitude = $this->latitude->asRadians()->getValue();
1744 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1745 9
        $alphaC = $azimuthOfInitialLine->asRadians()->getValue();
1746 9
        $kC = $scaleFactorOnInitialLine->asUnity()->getValue();
1747 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1748 9
        $e = $ellipsoid->getEccentricity();
1749 9
        $e2 = $ellipsoid->getEccentricitySquared();
1750
1751 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1752 9
        $latS = self::asin(sin($latC) / $B);
1753 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1754 9
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1755
1756 9
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1757 9
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1758 9
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1759 9
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1760 9
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1761 9
        $W = cos($P) * sin($L);
1762 9
        $d = hypot($U, $V);
1763 9
        if ($d === 0.0) {
1764
            $LPrime = 0;
1765
            $PPrime = static::sign($W) * M_PI / 2;
1766
        } else {
1767 9
            $LPrime = 2 * atan($V / ($U + $d));
1768 9
            $PPrime = atan($W / $d);
1769
        }
1770 9
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1771 9
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1772
1773 9
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1774 9
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1775
1776 9
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1777
    }
1778
1779
    /**
1780
     * Transverse Mercator.
1781
     */
1782 1274
    public function transverseMercator(
1783
        Projected $to,
1784
        Angle $latitudeOfNaturalOrigin,
1785
        Angle $longitudeOfNaturalOrigin,
1786
        Scale $scaleFactorAtNaturalOrigin,
1787
        Length $falseEasting,
1788
        Length $falseNorthing
1789
    ): ProjectedPoint {
1790 1274
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1791 1274
        $latitude = $this->latitude->asRadians()->getValue();
1792 1274
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1793 1274
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1794 1274
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1795 1274
        $e = $ellipsoid->getEccentricity();
1796 1274
        $f = $ellipsoid->getFlattening();
1797
1798 1274
        $n = $f / (2 - $f);
1799 1274
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1800
1801 1274
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1802 1274
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1803 1274
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1804 1274
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1805 1274
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1806 1274
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1807 1274
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1808 1274
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1809
1810 1274
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1811 495
            $mO = 0;
1812 779
        } elseif ($latitudeOrigin === M_PI / 2) {
1813
            $mO = $B * M_PI / 2;
1814 779
        } elseif ($latitudeOrigin === -M_PI / 2) {
1815 207
            $mO = $B * -M_PI / 2;
1816
        } else {
1817 572
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1818 572
            $betaO = atan(sinh($qO));
1819 572
            $xiO0 = self::asin(sin($betaO));
1820 572
            $xiO1 = $h1 * sin(2 * $xiO0);
1821 572
            $xiO2 = $h2 * sin(4 * $xiO0);
1822 572
            $xiO3 = $h3 * sin(6 * $xiO0);
1823 572
            $xiO4 = $h4 * sin(8 * $xiO0);
1824 572
            $xiO5 = $h5 * sin(10 * $xiO0);
1825 572
            $xiO6 = $h6 * sin(12 * $xiO0);
1826 572
            $xiO7 = $h7 * sin(14 * $xiO0);
1827 572
            $xiO8 = $h8 * sin(16 * $xiO0);
1828 572
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1829 572
            $mO = $B * $xiO;
1830
        }
1831
1832 1274
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1833 1274
        $beta = atan(sinh($Q));
1834 1274
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1835 1274
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1836 1274
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1837 1274
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1838 1274
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1839 1274
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1840 1274
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1841 1274
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1842 1274
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1843 1274
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1844 1274
        $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0);
1845 1274
        $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0);
1846 1274
        $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0);
1847 1274
        $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0);
1848 1274
        $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0);
1849 1274
        $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0);
1850 1274
        $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0);
1851 1274
        $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0);
1852 1274
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8;
1853 1274
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8;
1854
1855 1274
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1856 1274
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1857
1858 1274
        $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null;
1859
1860 1274
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height);
1861
    }
1862
1863
    /**
1864
     * Transverse Mercator Zoned Grid System
1865
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1866
     * each zone.
1867
     */
1868 36
    public function transverseMercatorZonedGrid(
1869
        Projected $to,
1870
        Angle $latitudeOfNaturalOrigin,
1871
        Angle $initialLongitude,
1872
        Angle $zoneWidth,
1873
        Scale $scaleFactorAtNaturalOrigin,
1874
        Length $falseEasting,
1875
        Length $falseNorthing
1876
    ): ProjectedPoint {
1877 36
        $W = $zoneWidth->asDegrees()->getValue();
1878 36
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1879
1880 36
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1881 36
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1882
1883 36
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1884
    }
1885
1886
    /**
1887
     * New Zealand Map Grid.
1888
     */
1889 27
    public function newZealandMapGrid(
1890
        Projected $to,
1891
        Angle $latitudeOfNaturalOrigin,
1892
        Angle $longitudeOfNaturalOrigin,
1893
        Length $falseEasting,
1894
        Length $falseNorthing
1895
    ): ProjectedPoint {
1896 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1897 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1898
1899 27
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1900 27
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1901
1902 27
        $deltaPsi = 0;
1903 27
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1904 27
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1905 27
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1906 27
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1907 27
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1908 27
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1909 27
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1910 27
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1911 27
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1912 27
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1913
1914 27
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1915
1916 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1917 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1918 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1919 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1920 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1921 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1922 27
        $z = new ComplexNumber(0, 0);
1923 27
        $z = $z->add($B1->multiply($zeta->pow(1)));
1924 27
        $z = $z->add($B2->multiply($zeta->pow(2)));
1925 27
        $z = $z->add($B3->multiply($zeta->pow(3)));
1926 27
        $z = $z->add($B4->multiply($zeta->pow(4)));
1927 27
        $z = $z->add($B5->multiply($zeta->pow(5)));
1928 27
        $z = $z->add($B6->multiply($zeta->pow(6)));
1929
1930 27
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1931 27
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1932
1933 27
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1934
    }
1935
1936
    /**
1937
     * Madrid to ED50 polynomial.
1938
     */
1939 9
    public function madridToED50Polynomial(
1940
        Geographic2D $to,
1941
        Scale $A0,
1942
        Scale $A1,
1943
        Scale $A2,
1944
        Scale $A3,
1945
        Angle $B00,
1946
        Scale $B0,
1947
        Scale $B1,
1948
        Scale $B2,
1949
        Scale $B3
1950
    ): self {
1951 9
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1952 9
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1953
1954 9
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1955
    }
1956
1957
    /**
1958
     * Geographic3D to 2D conversion.
1959
     */
1960 29
    public function threeDToTwoD(
1961
        Geographic2D|Geographic3D $to
1962
    ): self {
1963 29
        if ($to instanceof Geographic2D) {
1964 29
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1965
        }
1966
1967
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1968
    }
1969
1970
    /**
1971
     * Geographic2D offsets.
1972
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1973
     * coordinate values of the point in the source system.
1974
     */
1975 9
    public function geographic2DOffsets(
1976
        Geographic2D|Geographic3D $to,
1977
        Angle $latitudeOffset,
1978
        Angle $longitudeOffset
1979
    ): self {
1980 9
        $toLatitude = $this->latitude->add($latitudeOffset);
1981 9
        $toLongitude = $this->longitude->add($longitudeOffset);
1982
1983 9
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
1984
    }
1985
1986
    /*
1987
     * Geographic2D with Height Offsets.
1988
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1989
     * coordinate values of the point in the source system.
1990
     */
1991
    public function geographic2DWithHeightOffsets(
1992
        Compound $to,
1993
        Angle $latitudeOffset,
1994
        Angle $longitudeOffset,
1995
        Length $geoidUndulation
1996
    ): CompoundPoint {
1997
        $toLatitude = $this->latitude->add($latitudeOffset);
1998
        $toLongitude = $this->longitude->add($longitudeOffset);
1999
        $toHeight = $this->height->add($geoidUndulation);
0 ignored issues
show
Bug introduced by
The method add() does not exist on null. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

1999
        /** @scrutinizer ignore-call */ 
2000
        $toHeight = $this->height->add($geoidUndulation);

This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.

This is most likely a typographical error or the method has been renamed.

Loading history...
2000
2001
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2001
        $horizontal = static::create(/** @scrutinizer ignore-type */ $to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
Loading history...
2002
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
0 ignored issues
show
Bug introduced by
It seems like $toHeight can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2002
        $vertical = VerticalPoint::create($to->getVertical(), /** @scrutinizer ignore-type */ $toHeight, $this->epoch);
Loading history...
2003
2004
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
2005
    }
2006
2007
    /**
2008
     * General polynomial.
2009
     * @param Coefficient[] $powerCoefficients
2010
     */
2011 18
    public function generalPolynomial(
2012
        Geographic2D|Geographic3D $to,
2013
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2014
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2015
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2016
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2017
        Scale $scalingFactorForSourceCRSCoordDifferences,
2018
        Scale $scalingFactorForTargetCRSCoordDifferences,
2019
        Scale $A0,
2020
        Scale $B0,
2021
        array $powerCoefficients
2022
    ): self {
2023 18
        $xs = $this->latitude->getValue();
2024 18
        $ys = $this->longitude->getValue();
2025
2026 18
        $t = $this->generalPolynomialUnitless(
2027
            $xs,
2028
            $ys,
2029
            $ordinate1OfEvaluationPointInSourceCRS,
2030
            $ordinate2OfEvaluationPointInSourceCRS,
2031
            $ordinate1OfEvaluationPointInTargetCRS,
2032
            $ordinate2OfEvaluationPointInTargetCRS,
2033
            $scalingFactorForSourceCRSCoordDifferences,
2034
            $scalingFactorForTargetCRSCoordDifferences,
2035
            $A0,
2036
            $B0,
2037
            $powerCoefficients
2038
        );
2039
2040 18
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2041 18
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2042
2043 18
        return static::create(
2044
            $to,
2045 18
            Angle::makeUnit($t['xt'], $xtUnit),
2046 18
            Angle::makeUnit($t['yt'], $ytUnit),
2047 18
            $this->height,
2048 18
            $this->epoch
2049
        );
2050
    }
2051
2052
    /**
2053
     * Reversible polynomial.
2054
     * @param Coefficient[] $powerCoefficients
2055
     */
2056 36
    public function reversiblePolynomial(
2057
        Geographic2D|Geographic3D $to,
2058
        Angle $ordinate1OfEvaluationPoint,
2059
        Angle $ordinate2OfEvaluationPoint,
2060
        Scale $scalingFactorForCoordDifferences,
2061
        Scale $A0,
2062
        Scale $B0,
2063
        $powerCoefficients
2064
    ): self {
2065 36
        $xs = $this->latitude->getValue();
2066 36
        $ys = $this->longitude->getValue();
2067
2068 36
        $t = $this->reversiblePolynomialUnitless(
2069
            $xs,
2070
            $ys,
2071
            $ordinate1OfEvaluationPoint,
2072
            $ordinate2OfEvaluationPoint,
2073
            $scalingFactorForCoordDifferences,
2074
            $A0,
2075
            $B0,
2076
            $powerCoefficients
2077
        );
2078
2079 36
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2080 36
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2081
2082 36
        return static::create(
2083
            $to,
2084 36
            Angle::makeUnit($t['xt'], $xtUnit),
2085 36
            Angle::makeUnit($t['yt'], $ytUnit),
2086 36
            $this->height,
2087 36
            $this->epoch
2088
        );
2089
    }
2090
2091
    /**
2092
     * Axis Order Reversal.
2093
     */
2094
    public function axisReversal(
2095
        Geographic2D|Geographic3D $to
2096
    ): self {
2097
        // axes are read in from the CRS, this is a book-keeping adjustment only
2098
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2099
    }
2100
2101
    /**
2102
     * Ordnance Survey National Transformation
2103
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2104
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2105
     */
2106 3
    public function OSTN15(
2107
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2107
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2108
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2109
    ): ProjectedPoint {
2110 3
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2111 3
        $etrs89NationalGrid = new Projected(
2112
            'ETRS89 / National Grid',
2113 3
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2114 3
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2115 3
            $osgb36NationalGrid->getBoundingArea()
2116
        );
2117
2118 3
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2119
2120 3
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2121
    }
2122
2123
    /**
2124
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2125
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2126
     * coordinate differences.
2127
     */
2128 1
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2129
        Compound $to,
2130
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2131
    ): CompoundPoint {
2132 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2133 1
        $etrs89NationalGrid = new Projected(
2134
            'ETRS89 / National Grid',
2135 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2136 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2137 1
            $osgb36NationalGrid->getBoundingArea()
2138
        );
2139
2140 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2141
2142 1
        $horizontalPoint = self::create(
2143 1
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2143
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2144 1
            $this->latitude,
2145 1
            $this->longitude,
2146
            null,
2147 1
            $this->getCoordinateEpoch()
2148
        );
2149
2150 1
        $verticalPoint = VerticalPoint::create(
2151 1
            $to->getVertical(),
2152 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2152
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2153 1
            $this->getCoordinateEpoch()
2154
        );
2155
2156 1
        return CompoundPoint::create(
2157
            $to,
2158
            $horizontalPoint,
2159
            $verticalPoint,
2160 1
            $this->getCoordinateEpoch()
2161
        );
2162
    }
2163
2164
    /**
2165
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2166
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2167
     * coordinate differences.
2168
     */
2169 1
    public function geographic3DToGravityHeightOSGM15(
2170
        Vertical $to,
2171
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2172
    ): VerticalPoint {
2173 1
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2174 1
        $etrs89NationalGrid = new Projected(
2175
            'ETRS89 / National Grid',
2176 1
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2177 1
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2178 1
            $osgb36NationalGrid->getBoundingArea()
2179
        );
2180
2181 1
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2182
2183 1
        return VerticalPoint::create(
2184
            $to,
2185 1
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...Adjustment($projected)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2185
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
Loading history...
2186 1
            $this->getCoordinateEpoch()
2187
        );
2188
    }
2189
2190
    /**
2191
     * Geog3D to Geog2D+GravityRelatedHeight.
2192
     */
2193 12
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2194
        Compound $to,
2195
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2196
    ): CompoundPoint {
2197 12
        $horizontalPoint = self::create(
2198 12
            $to->getHorizontal(),
0 ignored issues
show
Bug introduced by
It seems like $to->getHorizontal() can also be of type PHPCoord\CoordinateReferenceSystem\Geocentric; however, parameter $crs of PHPCoord\GeographicPoint::create() does only seem to accept PHPCoord\CoordinateRefer...enceSystem\Geographic3D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2198
            /** @scrutinizer ignore-type */ $to->getHorizontal(),
Loading history...
2199 12
            $this->latitude,
2200 12
            $this->longitude,
2201
            null,
2202 12
            $this->getCoordinateEpoch()
2203
        );
2204
2205 12
        $verticalPoint = VerticalPoint::create(
2206 12
            $to->getVertical(),
2207 12
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2207
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2208 12
            $this->getCoordinateEpoch()
2209
        );
2210
2211 12
        return CompoundPoint::create(
2212
            $to,
2213
            $horizontalPoint,
2214
            $verticalPoint,
2215 12
            $this->getCoordinateEpoch()
2216
        );
2217
    }
2218
2219
    /**
2220
     * Geographic3D to GravityRelatedHeight.
2221
     */
2222 7
    public function geographic3DToGravityHeightFromGrid(
2223
        Vertical $to,
2224
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2225
    ): VerticalPoint {
2226 7
        return VerticalPoint::create(
2227
            $to,
2228 7
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
0 ignored issues
show
Bug introduced by
It seems like $this->height->subtract(...eightAdjustment($this)) can also be of type null; however, parameter $height of PHPCoord\VerticalPoint::create() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2228
            /** @scrutinizer ignore-type */ $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
Loading history...
2229 7
            $this->getCoordinateEpoch()
2230
        );
2231
    }
2232
2233
    /**
2234
     * NADCON5.
2235
     * @internal just a wrapper
2236
     */
2237 8
    public function offsetsFromGridNADCON5(
2238
        Geographic2D|Geographic3D $to,
2239
        NADCON5Grid $latitudeDifferenceFile,
2240
        NADCON5Grid $longitudeDifferenceFile,
2241
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2242
        bool $inReverse
2243
    ): self {
2244 8
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2245
2246 8
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2247
    }
2248
2249
    /**
2250
     * Geographic offsets from grid.
2251
     */
2252 19
    public function offsetsFromGrid(
2253
        Geographic2D|Geographic3D $to,
2254
        GeographicGrid $offsetsFile,
2255
        bool $inReverse
2256
    ): self {
2257 19
        if (!$inReverse) {
2258 13
            return $offsetsFile->applyForwardAdjustment($this, $to);
2259
        }
2260
2261 8
        return $offsetsFile->applyReverseAdjustment($this, $to);
2262
    }
2263
2264 382
    public function asGeographicValue(): GeographicValue
2265
    {
2266 382
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2267
    }
2268
2269 18
    public function asUTMPoint(): UTMPoint
2270
    {
2271 18
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2272
2273 18
        $initialLongitude = new Degree(-180);
2274 18
        $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2275
2276 18
        if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) {
2277 9
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000);
2278
        } else {
2279 9
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100);
2280
        }
2281
2282 18
        $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion);
2283
2284 18
        $projectedCRS = new Projected(
2285
            $srid,
2286 18
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2287 18
            $this->crs->getDatum(),
2288 18
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own)
2289
        );
2290
2291 18
        $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false);
2292
2293 18
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
0 ignored issues
show
Bug introduced by
The method getNorthing() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2293
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->/** @scrutinizer ignore-call */ getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
It seems like $this->crs can also be of type PHPCoord\CoordinateReferenceSystem\Geographic3D; however, parameter $crs of PHPCoord\UTMPoint::__construct() does only seem to accept PHPCoord\CoordinateReferenceSystem\Geographic2D, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

2293
        return new UTMPoint(/** @scrutinizer ignore-type */ $this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
Bug introduced by
The method getEasting() does not exist on PHPCoord\Point. It seems like you code against a sub-type of PHPCoord\Point such as PHPCoord\ProjectedPoint. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-call  annotation

2293
        return new UTMPoint($this->crs, $asProjected->/** @scrutinizer ignore-call */ getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
Loading history...
2294
    }
2295
}
2296