|
1
|
|
|
""" |
|
2
|
|
|
Classes containing the Target config parameters for the high-level interface and |
|
3
|
|
|
also the functions involving Models generation and assignment to datasets. |
|
4
|
|
|
""" |
|
5
|
|
|
|
|
6
|
|
|
from enum import Enum |
|
7
|
|
|
from typing import List |
|
8
|
|
|
|
|
9
|
|
|
import astropy.units as u |
|
10
|
|
|
import numpy as np |
|
11
|
|
|
from gammapy.modeling import Parameter |
|
12
|
|
|
from gammapy.modeling.models import ( |
|
13
|
|
|
SPATIAL_MODEL_REGISTRY, |
|
14
|
|
|
SPECTRAL_MODEL_REGISTRY, |
|
15
|
|
|
DatasetModels, |
|
16
|
|
|
EBLAbsorptionNormSpectralModel, |
|
17
|
|
|
FoVBackgroundModel, |
|
18
|
|
|
Models, |
|
19
|
|
|
SkyModel, |
|
20
|
|
|
SpectralModel, |
|
21
|
|
|
) |
|
22
|
|
|
|
|
23
|
|
|
from asgardpy.base.base import AngleType, BaseConfig, FrameEnum, PathType |
|
24
|
|
|
from asgardpy.base.geom import SkyPositionConfig |
|
25
|
|
|
|
|
26
|
|
|
__all__ = [ |
|
27
|
|
|
"BrokenPowerLaw2SpectralModel", |
|
28
|
|
|
"EBLAbsorptionModel", |
|
29
|
|
|
"ExpCutoffLogParabolaSpectralModel", |
|
30
|
|
|
"ModelTypeEnum", |
|
31
|
|
|
"RoISelectionConfig", |
|
32
|
|
|
"SpatialModelConfig", |
|
33
|
|
|
"SpectralModelConfig", |
|
34
|
|
|
"Target", |
|
35
|
|
|
"apply_selection_mask_to_models", |
|
36
|
|
|
"config_to_dict", |
|
37
|
|
|
"read_models_from_asgardpy_config", |
|
38
|
|
|
"set_models", |
|
39
|
|
|
] |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
|
|
# Basic components to define the Target Config and any Models Config |
|
43
|
|
|
class ModelTypeEnum(str, Enum): |
|
44
|
|
|
""" |
|
45
|
|
|
Config section for Different Gammapy Model type. |
|
46
|
|
|
""" |
|
47
|
|
|
|
|
48
|
|
|
skymodel = "SkyModel" |
|
49
|
|
|
fovbkgmodel = "FoVBackgroundModel" |
|
50
|
|
|
|
|
51
|
|
|
|
|
52
|
|
|
class EBLAbsorptionModel(BaseConfig): |
|
53
|
|
|
""" |
|
54
|
|
|
Config section for parameters to use for EBLAbsorptionNormSpectralModel. |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
filename: PathType = PathType("None") |
|
58
|
|
|
reference: str = "" |
|
59
|
|
|
type: str = "EBLAbsorptionNormSpectralModel" |
|
60
|
|
|
redshift: float = 0.0 |
|
61
|
|
|
alpha_norm: float = 1.0 |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
class ModelParams(BaseConfig): |
|
65
|
|
|
"""Config section for parameters to use for a basic Parameter object.""" |
|
66
|
|
|
|
|
67
|
|
|
name: str = "" |
|
68
|
|
|
value: float = 1 |
|
69
|
|
|
unit: str = " " |
|
70
|
|
|
error: float = 0.1 |
|
71
|
|
|
min: float = 0.1 |
|
72
|
|
|
max: float = 10 |
|
73
|
|
|
frozen: bool = True |
|
74
|
|
|
|
|
75
|
|
|
|
|
76
|
|
|
class SpectralModelConfig(BaseConfig): |
|
77
|
|
|
""" |
|
78
|
|
|
Config section for parameters to use for creating a SpectralModel object. |
|
79
|
|
|
""" |
|
80
|
|
|
|
|
81
|
|
|
type: str = "" |
|
82
|
|
|
parameters: List[ModelParams] = [ModelParams()] |
|
83
|
|
|
ebl_abs: EBLAbsorptionModel = EBLAbsorptionModel() |
|
84
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
class SpatialModelConfig(BaseConfig): |
|
87
|
|
|
""" |
|
88
|
|
|
Config section for parameters to use for creating a SpatialModel object. |
|
89
|
|
|
""" |
|
90
|
|
|
|
|
91
|
|
|
type: str = "" |
|
92
|
|
|
frame: FrameEnum = FrameEnum.icrs |
|
93
|
|
|
parameters: List[ModelParams] = [ModelParams()] |
|
94
|
|
|
|
|
95
|
|
|
|
|
96
|
|
|
class ModelComponent(BaseConfig): |
|
97
|
|
|
"""Config section for parameters to use for creating a SkyModel object.""" |
|
98
|
|
|
|
|
99
|
|
|
name: str = "" |
|
100
|
|
|
type: ModelTypeEnum = ModelTypeEnum.skymodel |
|
101
|
|
|
datasets_names: List[str] = [""] |
|
102
|
|
|
spectral: SpectralModelConfig = SpectralModelConfig() |
|
103
|
|
|
spatial: SpatialModelConfig = SpatialModelConfig() |
|
104
|
|
|
|
|
105
|
|
|
|
|
106
|
|
|
class RoISelectionConfig(BaseConfig): |
|
107
|
|
|
""" |
|
108
|
|
|
Config section for parameters to perform some selection on FoV source |
|
109
|
|
|
models. |
|
110
|
|
|
""" |
|
111
|
|
|
|
|
112
|
|
|
roi_radius: AngleType = 0 * u.deg |
|
113
|
|
|
free_sources: List[str] = [] |
|
114
|
|
|
|
|
115
|
|
|
|
|
116
|
|
|
class CatalogConfig(BaseConfig): |
|
117
|
|
|
"""Config section for parameters to use information from Catalog.""" |
|
118
|
|
|
|
|
119
|
|
|
name: str = "" |
|
120
|
|
|
selection_radius: AngleType = 0 * u.deg |
|
121
|
|
|
exclusion_radius: AngleType = 0 * u.deg |
|
122
|
|
|
|
|
123
|
|
|
|
|
124
|
|
|
class Target(BaseConfig): |
|
125
|
|
|
"""Config section for main information on creating various Models.""" |
|
126
|
|
|
|
|
127
|
|
|
source_name: str = "" |
|
128
|
|
|
sky_position: SkyPositionConfig = SkyPositionConfig() |
|
129
|
|
|
use_uniform_position: bool = True |
|
130
|
|
|
models_file: PathType = PathType("None") |
|
131
|
|
|
datasets_with_fov_bkg_model: List[str] = [] |
|
132
|
|
|
use_catalog: CatalogConfig = CatalogConfig() |
|
133
|
|
|
components: List[ModelComponent] = [ModelComponent()] |
|
134
|
|
|
covariance: str = "" |
|
135
|
|
|
from_3d: bool = False |
|
136
|
|
|
roi_selection: RoISelectionConfig = RoISelectionConfig() |
|
137
|
|
|
|
|
138
|
|
|
|
|
139
|
|
|
class ExpCutoffLogParabolaSpectralModel(SpectralModel): |
|
140
|
|
|
r"""Spectral Exponential Cutoff Log Parabola model. |
|
141
|
|
|
|
|
142
|
|
|
Using a simple template from Gammapy. |
|
143
|
|
|
|
|
144
|
|
|
.. math:: |
|
145
|
|
|
\phi(E) = \phi_0 \left( \frac{E}{E_0} \right) ^ { |
|
146
|
|
|
- \alpha_1 - \beta \log{ \left( \frac{E}{E_0} \right) }} \cdot |
|
147
|
|
|
\exp(- {(\lambda E})^{\alpha_2}) |
|
148
|
|
|
|
|
149
|
|
|
Parameters |
|
150
|
|
|
---------- |
|
151
|
|
|
amplitude : `~astropy.units.Quantity` |
|
152
|
|
|
:math:`\phi_0` |
|
153
|
|
|
reference : `~astropy.units.Quantity` |
|
154
|
|
|
:math:`E_0` |
|
155
|
|
|
alpha_1 : `~astropy.units.Quantity` |
|
156
|
|
|
:math:`\alpha_1` |
|
157
|
|
|
beta : `~astropy.units.Quantity` |
|
158
|
|
|
:math:`\beta` |
|
159
|
|
|
lambda_ : `~astropy.units.Quantity` |
|
160
|
|
|
:math:`\lambda` |
|
161
|
|
|
alpha_2 : `~astropy.units.Quantity` |
|
162
|
|
|
:math:`\alpha_2` |
|
163
|
|
|
""" |
|
164
|
|
|
|
|
165
|
|
|
tag = ["ExpCutoffLogParabolaSpectralModel", "ECLP"] |
|
166
|
|
|
|
|
167
|
|
|
amplitude = Parameter( |
|
168
|
|
|
"amplitude", |
|
169
|
|
|
"1e-12 cm-2 s-1 TeV-1", |
|
170
|
|
|
scale_method="scale10", |
|
171
|
|
|
interp="log", |
|
172
|
|
|
is_norm=True, |
|
173
|
|
|
) |
|
174
|
|
|
reference = Parameter("reference", "1 TeV", frozen=True) |
|
175
|
|
|
alpha_1 = Parameter("alpha_1", -2) |
|
176
|
|
|
alpha_2 = Parameter("alpha_2", 1, frozen=True) |
|
177
|
|
|
beta = Parameter("beta", 1) |
|
178
|
|
|
lambda_ = Parameter("lambda_", "0.1 TeV-1") |
|
179
|
|
|
|
|
180
|
|
|
@staticmethod |
|
181
|
|
|
def evaluate(energy, amplitude, reference, alpha_1, beta, lambda_, alpha_2): |
|
182
|
|
|
"""Evaluate the model (static function).""" |
|
183
|
|
|
en_ref = energy / reference |
|
184
|
|
|
exponent = -alpha_1 - beta * np.log(en_ref) |
|
185
|
|
|
cutoff = np.exp(-np.power(energy * lambda_, alpha_2)) |
|
186
|
|
|
|
|
187
|
|
|
return amplitude * np.power(en_ref, exponent) * cutoff |
|
188
|
|
|
|
|
189
|
|
|
|
|
190
|
|
|
class BrokenPowerLaw2SpectralModel(SpectralModel): |
|
191
|
|
|
r"""Spectral broken power-law 2 model. |
|
192
|
|
|
|
|
193
|
|
|
In this slightly modified Broken Power Law, instead of having the second index |
|
194
|
|
|
as a distinct parameter, the difference in the spectral indices around the |
|
195
|
|
|
Break Energy is used, to try for some assumptions on the different physical |
|
196
|
|
|
processes that define the full spectrum, where the second process is dependent |
|
197
|
|
|
on the first process. |
|
198
|
|
|
|
|
199
|
|
|
For more information see :ref:`broken-powerlaw-spectral-model`. |
|
200
|
|
|
|
|
201
|
|
|
.. math:: |
|
202
|
|
|
\phi(E) = \phi_0 \cdot \begin{cases} |
|
203
|
|
|
\left( \frac{E}{E_{break}} \right)^{-\Gamma_1} & \text{if } E < E_{break} \\ |
|
204
|
|
|
\left( \frac{E}{E_{break}} \right)^{-(\Gamma_1 + \Delta\Gamma)} & \text{otherwise} |
|
205
|
|
|
\end{cases} |
|
206
|
|
|
|
|
207
|
|
|
Parameters |
|
208
|
|
|
---------- |
|
209
|
|
|
index1 : `~astropy.units.Quantity` |
|
210
|
|
|
:math:`\Gamma_1` |
|
211
|
|
|
index_diff : `~astropy.units.Quantity` |
|
212
|
|
|
:math:`\Delta\Gamma` |
|
213
|
|
|
amplitude : `~astropy.units.Quantity` |
|
214
|
|
|
:math:`\phi_0` |
|
215
|
|
|
ebreak : `~astropy.units.Quantity` |
|
216
|
|
|
:math:`E_{break}` |
|
217
|
|
|
|
|
218
|
|
|
See Also |
|
219
|
|
|
-------- |
|
220
|
|
|
SmoothBrokenPowerLawSpectralModel |
|
221
|
|
|
""" |
|
222
|
|
|
|
|
223
|
|
|
tag = ["BrokenPowerLaw2SpectralModel", "bpl2"] |
|
224
|
|
|
index1 = Parameter("index1", 2.0) |
|
225
|
|
|
index_diff = Parameter("index_diff", 1.0) |
|
226
|
|
|
amplitude = Parameter( |
|
227
|
|
|
name="amplitude", |
|
228
|
|
|
value="1e-12 cm-2 s-1 TeV-1", |
|
229
|
|
|
scale_method="scale10", |
|
230
|
|
|
interp="log", |
|
231
|
|
|
is_norm=True, |
|
232
|
|
|
) |
|
233
|
|
|
ebreak = Parameter("ebreak", "1 TeV") |
|
234
|
|
|
|
|
235
|
|
|
@staticmethod |
|
236
|
|
|
def evaluate(energy, index1, index_diff, amplitude, ebreak): |
|
237
|
|
|
"""Evaluate the model (static function).""" |
|
238
|
|
|
energy = np.atleast_1d(energy) |
|
239
|
|
|
cond = energy < ebreak |
|
240
|
|
|
bpwl2 = amplitude * np.ones(energy.shape) |
|
241
|
|
|
|
|
242
|
|
|
index2 = index1 + index_diff |
|
243
|
|
|
bpwl2[cond] *= (energy[cond] / ebreak) ** (-index1) |
|
244
|
|
|
bpwl2[~cond] *= (energy[~cond] / ebreak) ** (-index2) |
|
245
|
|
|
|
|
246
|
|
|
return bpwl2 |
|
247
|
|
|
|
|
248
|
|
|
|
|
249
|
|
|
SPECTRAL_MODEL_REGISTRY.append(ExpCutoffLogParabolaSpectralModel) |
|
250
|
|
|
SPECTRAL_MODEL_REGISTRY.append(BrokenPowerLaw2SpectralModel) |
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
# Function for Models assignment |
|
254
|
|
|
def set_models( |
|
255
|
|
|
config_target, |
|
256
|
|
|
datasets, |
|
257
|
|
|
datasets_name_list=None, |
|
258
|
|
|
models=None, |
|
259
|
|
|
): |
|
260
|
|
|
""" |
|
261
|
|
|
Set models on given Datasets. |
|
262
|
|
|
|
|
263
|
|
|
Parameters |
|
264
|
|
|
---------- |
|
265
|
|
|
config_target: `AsgardpyConfig.target` |
|
266
|
|
|
AsgardpyConfig containing target information. |
|
267
|
|
|
datasets: `gammapy.datasets.Datasets` |
|
268
|
|
|
Datasets object |
|
269
|
|
|
dataset_name_list: List |
|
270
|
|
|
List of datasets_names to be used on the Models, before assigning them |
|
271
|
|
|
to the given datasets. |
|
272
|
|
|
models : `~gammapy.modeling.models.Models` or str of file location or None |
|
273
|
|
|
Models object or YAML models string |
|
274
|
|
|
|
|
275
|
|
|
Returns |
|
276
|
|
|
------- |
|
277
|
|
|
datasets: `gammapy.datasets.Datasets` |
|
278
|
|
|
Datasets object with Models assigned. |
|
279
|
|
|
""" |
|
280
|
|
|
# Have some checks on argument types |
|
281
|
|
|
if isinstance(models, (DatasetModels, list)): |
|
282
|
|
|
models = Models(models) |
|
283
|
|
|
elif isinstance(models, PathType): |
|
284
|
|
|
models = Models.read(models) |
|
285
|
|
|
elif models is None: |
|
286
|
|
|
models = Models(models) |
|
287
|
|
|
else: |
|
288
|
|
|
raise TypeError(f"Invalid type: {type(models)}") |
|
289
|
|
|
|
|
290
|
|
|
if len(models) == 0: |
|
291
|
|
|
if config_target.components[0].name != "": |
|
292
|
|
|
models = read_models_from_asgardpy_config(config_target) |
|
293
|
|
|
else: |
|
294
|
|
|
raise Exception("No input for Models provided for the Target source!") |
|
295
|
|
|
else: |
|
296
|
|
|
models = apply_selection_mask_to_models( |
|
297
|
|
|
list_sources=models, |
|
298
|
|
|
target_source=config_target.source_name, |
|
299
|
|
|
roi_radius=config_target.roi_selection.roi_radius, |
|
300
|
|
|
free_sources=config_target.roi_selection.free_sources, |
|
301
|
|
|
) |
|
302
|
|
|
|
|
303
|
|
|
if len(config_target.datasets_with_fov_bkg_model) > 0: |
|
304
|
|
|
# For extending a Background Model for a given 3D dataset name |
|
305
|
|
|
bkg_models = [] |
|
306
|
|
|
|
|
307
|
|
|
for dataset in datasets: |
|
308
|
|
|
if dataset.name in config_target.datasets_with_fov_bkg_model: |
|
309
|
|
|
# Check if it is of MapDataset or MapDatasetOnOff type and |
|
310
|
|
|
# no associated background model exists already. |
|
311
|
|
|
if "MapDataset" in dataset.tag and dataset.background_model is None: |
|
312
|
|
|
bkg_models.append(FoVBackgroundModel(dataset_name=f"{dataset.name}-bkg")) |
|
313
|
|
|
|
|
314
|
|
|
models.extend(bkg_models) |
|
315
|
|
|
|
|
316
|
|
|
if datasets_name_list is None: |
|
317
|
|
|
datasets_name_list = datasets.names |
|
318
|
|
|
|
|
319
|
|
|
if len(models) > 1: |
|
320
|
|
|
models[config_target.source_name].datasets_names = datasets_name_list |
|
321
|
|
|
|
|
322
|
|
|
# Check if FoVBackgroundModel is provided |
|
323
|
|
|
bkg_model_name = [m_name for m_name in models.names if "bkg" in m_name] |
|
324
|
|
|
|
|
325
|
|
|
if len(bkg_model_name) > 0: |
|
326
|
|
|
# Remove the -bkg part of the name of the FoVBackgroundModel to get |
|
327
|
|
|
# the appropriate datasets name. |
|
328
|
|
|
for bkg_name in bkg_model_name: |
|
329
|
|
|
models[bkg_name].datasets_names = [bkg_name[:-4]] |
|
330
|
|
|
else: |
|
331
|
|
|
models.datasets_names = datasets_name_list |
|
332
|
|
|
|
|
333
|
|
|
datasets.models = models |
|
334
|
|
|
|
|
335
|
|
|
return datasets, models |
|
336
|
|
|
|
|
337
|
|
|
|
|
338
|
|
|
def apply_selection_mask_to_models( |
|
339
|
|
|
list_sources, target_source=None, selection_mask=None, roi_radius=0 * u.deg, free_sources=[] |
|
340
|
|
|
): |
|
341
|
|
|
""" |
|
342
|
|
|
For a given list of source models, with a given target source, apply various |
|
343
|
|
|
selection masks on the Region of Interest in the sky. This will lead to |
|
344
|
|
|
complete exclusion of models or freezing some or all spectral parameters. |
|
345
|
|
|
These selections excludes the diffuse background models in the given list. |
|
346
|
|
|
|
|
347
|
|
|
First priority is given if a distinct selection mask is provided, with a |
|
348
|
|
|
list of excluded regions to return only the source models within the selected |
|
349
|
|
|
ROI. |
|
350
|
|
|
|
|
351
|
|
|
Second priority is on creating a Circular ROI as per the given radius, and |
|
352
|
|
|
freeze all the spectral parameters of the models of the sources. |
|
353
|
|
|
|
|
354
|
|
|
Third priority is when a list of free_sources is provided, then the |
|
355
|
|
|
spectral amplitude of models of those sources, if present in the given list |
|
356
|
|
|
of models, will be unfrozen, and hence, allowed to be variable for fitting. |
|
357
|
|
|
|
|
358
|
|
|
Parameters |
|
359
|
|
|
---------- |
|
360
|
|
|
list_sources: '~gammapy.modeling.models.Models' |
|
361
|
|
|
Models object containing a list of source models. |
|
362
|
|
|
target_source: 'str' |
|
363
|
|
|
Name of the target source, whose position is used as the center of ROI. |
|
364
|
|
|
selection_mask: 'WcsNDMap' |
|
365
|
|
|
Map containing a boolean mask to apply to Models object. |
|
366
|
|
|
roi_radius: 'astropy.units.Quantity' or 'asgardpy.data.base.AngleType' |
|
367
|
|
|
Radius for a circular region around ROI (deg) |
|
368
|
|
|
free_sources: 'list' |
|
369
|
|
|
List of source names for which the spectral amplitude is to be kept free. |
|
370
|
|
|
|
|
371
|
|
|
Returns |
|
372
|
|
|
------- |
|
373
|
|
|
list_sources: '~gammapy.modeling.models.Models' |
|
374
|
|
|
Selected Models object. |
|
375
|
|
|
""" |
|
376
|
|
|
list_sources_excluded = [] |
|
377
|
|
|
list_diffuse = [] |
|
378
|
|
|
|
|
379
|
|
|
# Separate the list of sources and diffuse background |
|
380
|
|
|
for model_ in list_sources: |
|
381
|
|
|
if "diffuse" in model_.name or "bkg" in model_.name: |
|
382
|
|
|
list_diffuse.append(model_) |
|
383
|
|
|
else: |
|
384
|
|
|
list_sources_excluded.append(model_) |
|
385
|
|
|
|
|
386
|
|
|
list_sources_excluded = Models(list_sources_excluded) |
|
387
|
|
|
|
|
388
|
|
|
# Get the target source position as the center of RoI |
|
389
|
|
|
if not target_source: |
|
390
|
|
|
target_source = list_sources_excluded[0].name |
|
391
|
|
|
target_source_pos = target_source.spatial_model.position |
|
392
|
|
|
else: |
|
393
|
|
|
target_source_pos = list_sources_excluded[target_source].spatial_model.position |
|
394
|
|
|
|
|
395
|
|
|
# If a distinct selection mask is provided |
|
396
|
|
|
if selection_mask: |
|
397
|
|
|
list_sources_excluded = list_sources_excluded.select_mask(selection_mask) |
|
398
|
|
|
|
|
399
|
|
|
# If RoI radius is provided and is not default |
|
400
|
|
|
if roi_radius.to_value("deg") != 0: |
|
401
|
|
|
for model_ in list_sources_excluded: |
|
402
|
|
|
model_pos = model_.spatial_model.position |
|
403
|
|
|
separation = target_source_pos.separation(model_pos).deg |
|
404
|
|
|
if separation >= roi_radius.deg: |
|
405
|
|
|
model_.spectral_model.freeze() |
|
406
|
|
|
else: |
|
407
|
|
|
# For a given list of non free sources, unfreeze the spectral amplitude |
|
408
|
|
|
if len(free_sources) > 0: |
|
409
|
|
|
for model_ in list_sources_excluded: |
|
410
|
|
|
# Freeze all spectral parameters for other models |
|
411
|
|
|
if model_.name != target_source: |
|
412
|
|
|
model_.spectral_model.freeze() |
|
413
|
|
|
# and now unfreeze the amplitude of selected models |
|
414
|
|
|
if model_.name in free_sources: |
|
415
|
|
|
model_.spectral_model.parameters["amplitude"].frozen = False |
|
416
|
|
|
|
|
417
|
|
|
# Add the diffuse background models back |
|
418
|
|
|
for diff_ in list_diffuse: |
|
419
|
|
|
list_sources_excluded.append(diff_) |
|
420
|
|
|
|
|
421
|
|
|
# Re-assign to the main variable |
|
422
|
|
|
list_sources = list_sources_excluded |
|
423
|
|
|
|
|
424
|
|
|
return list_sources |
|
425
|
|
|
|
|
426
|
|
|
|
|
427
|
|
|
# Functions for Models generation |
|
428
|
|
|
def read_models_from_asgardpy_config(config): |
|
429
|
|
|
""" |
|
430
|
|
|
Reading Models information from AsgardpyConfig and return Models object. |
|
431
|
|
|
If a FoVBackgroundModel information is provided, it will also be added. |
|
432
|
|
|
|
|
433
|
|
|
Parameter |
|
434
|
|
|
--------- |
|
435
|
|
|
config: `AsgardpyConfig` |
|
436
|
|
|
Config section containing Target source information |
|
437
|
|
|
|
|
438
|
|
|
Returns |
|
439
|
|
|
------- |
|
440
|
|
|
models: `gammapy.modeling.models.Models` |
|
441
|
|
|
Full gammapy Models object. |
|
442
|
|
|
""" |
|
443
|
|
|
models = Models() |
|
444
|
|
|
|
|
445
|
|
|
for model_config in config.components: |
|
446
|
|
|
if model_config.type == "SkyModel": |
|
447
|
|
|
# Spectral Model |
|
448
|
|
|
if model_config.spectral.ebl_abs.reference != "": |
|
449
|
|
|
model1 = SPECTRAL_MODEL_REGISTRY.get_cls(model_config.spectral.type)().from_dict( |
|
450
|
|
|
{"spectral": config_to_dict(model_config.spectral)} |
|
451
|
|
|
) |
|
452
|
|
|
|
|
453
|
|
|
ebl_model = model_config.spectral.ebl_abs |
|
454
|
|
|
|
|
455
|
|
|
# First check for filename of a custom EBL model |
|
456
|
|
|
if ebl_model.filename.is_file(): |
|
457
|
|
|
model2 = EBLAbsorptionNormSpectralModel.read( |
|
458
|
|
|
str(ebl_model.filename), redshift=ebl_model.redshift |
|
459
|
|
|
) |
|
460
|
|
|
# Update the reference name when using the custom EBL model for logging |
|
461
|
|
|
ebl_model.reference = ebl_model.filename.name[:-8].replace("-", "_") |
|
462
|
|
|
else: |
|
463
|
|
|
model2 = EBLAbsorptionNormSpectralModel.read_builtin( |
|
464
|
|
|
ebl_model.reference, redshift=ebl_model.redshift |
|
465
|
|
|
) |
|
466
|
|
|
if ebl_model.alpha_norm: |
|
467
|
|
|
model2.alpha_norm.value = ebl_model.alpha_norm |
|
468
|
|
|
spectral_model = model1 * model2 |
|
469
|
|
|
else: |
|
470
|
|
|
if model_config.spectral.type == "ExpCutoffLogParabolaSpectralModel": |
|
471
|
|
|
spectral_model = ExpCutoffLogParabolaSpectralModel().from_dict( |
|
472
|
|
|
{"spectral": config_to_dict(model_config.spectral)} |
|
473
|
|
|
) |
|
474
|
|
|
elif model_config.spectral.type == "BrokenPowerLaw2SpectralModel": |
|
475
|
|
|
spectral_model = BrokenPowerLaw2SpectralModel().from_dict( |
|
476
|
|
|
{"spectral": config_to_dict(model_config.spectral)} |
|
477
|
|
|
) |
|
478
|
|
|
else: |
|
479
|
|
|
spectral_model = SPECTRAL_MODEL_REGISTRY.get_cls(model_config.spectral.type)().from_dict( |
|
480
|
|
|
{"spectral": config_to_dict(model_config.spectral)} |
|
481
|
|
|
) |
|
482
|
|
|
spectral_model.name = config.source_name |
|
483
|
|
|
|
|
484
|
|
|
# Spatial model if provided |
|
485
|
|
|
if model_config.spatial.type != "": |
|
486
|
|
|
spatial_model = SPATIAL_MODEL_REGISTRY.get_cls(model_config.spatial.type)().from_dict( |
|
487
|
|
|
{"spatial": config_to_dict(model_config.spatial)} |
|
488
|
|
|
) |
|
489
|
|
|
else: |
|
490
|
|
|
spatial_model = None |
|
491
|
|
|
|
|
492
|
|
|
models.append( |
|
493
|
|
|
SkyModel( |
|
494
|
|
|
spectral_model=spectral_model, |
|
495
|
|
|
spatial_model=spatial_model, |
|
496
|
|
|
name=config.source_name, |
|
497
|
|
|
) |
|
498
|
|
|
) |
|
499
|
|
|
|
|
500
|
|
|
# FoVBackgroundModel is the second component |
|
501
|
|
|
if model_config.type == "FoVBackgroundModel": |
|
502
|
|
|
# Spectral Model. At least this has to be provided for distinct |
|
503
|
|
|
# parameter values |
|
504
|
|
|
spectral_model_fov = SPECTRAL_MODEL_REGISTRY.get_cls(model_config.spectral.type)().from_dict( |
|
505
|
|
|
{"spectral": config_to_dict(model_config.spectral)} |
|
506
|
|
|
) |
|
507
|
|
|
|
|
508
|
|
|
# Spatial model if provided |
|
509
|
|
|
if model_config.spatial.type != "": |
|
510
|
|
|
spatial_model_fov = SPATIAL_MODEL_REGISTRY.get_cls(model_config.spatial.type)().from_dict( |
|
511
|
|
|
{"spatial": config_to_dict(model_config.spatial)} |
|
512
|
|
|
) |
|
513
|
|
|
else: |
|
514
|
|
|
spatial_model_fov = None |
|
515
|
|
|
|
|
516
|
|
|
models.append( |
|
517
|
|
|
FoVBackgroundModel( |
|
518
|
|
|
spectral_model=spectral_model_fov, |
|
519
|
|
|
spatial_model=spatial_model_fov, |
|
520
|
|
|
dataset_name=model_config.datasets_names[0], |
|
521
|
|
|
) |
|
522
|
|
|
) |
|
523
|
|
|
|
|
524
|
|
|
return models |
|
525
|
|
|
|
|
526
|
|
|
|
|
527
|
|
|
def config_to_dict(model_config): |
|
528
|
|
|
""" |
|
529
|
|
|
Convert the Spectral/Spatial models into dict. |
|
530
|
|
|
Probably an extra step and maybe removed later. |
|
531
|
|
|
|
|
532
|
|
|
Parameter |
|
533
|
|
|
--------- |
|
534
|
|
|
model_config: `AsgardpyConfig` |
|
535
|
|
|
Config section containing Target Model SkyModel components only. |
|
536
|
|
|
|
|
537
|
|
|
Returns |
|
538
|
|
|
------- |
|
539
|
|
|
model_dict: dict |
|
540
|
|
|
dictionary of the particular model. |
|
541
|
|
|
""" |
|
542
|
|
|
model_dict = {} |
|
543
|
|
|
model_dict["type"] = str(model_config.type) |
|
544
|
|
|
model_dict["parameters"] = [] |
|
545
|
|
|
|
|
546
|
|
|
for par in model_config.parameters: |
|
547
|
|
|
par_dict = {} |
|
548
|
|
|
par_dict["name"] = par.name |
|
549
|
|
|
par_dict["value"] = par.value |
|
550
|
|
|
par_dict["unit"] = par.unit |
|
551
|
|
|
par_dict["error"] = par.error |
|
552
|
|
|
par_dict["min"] = par.min |
|
553
|
|
|
par_dict["max"] = par.max |
|
554
|
|
|
par_dict["frozen"] = par.frozen |
|
555
|
|
|
model_dict["parameters"].append(par_dict) |
|
556
|
|
|
|
|
557
|
|
|
# For spatial model, include frame info |
|
558
|
|
|
try: |
|
559
|
|
|
getattr(model_dict, "frame") |
|
560
|
|
|
except AttributeError: |
|
561
|
|
|
pass |
|
562
|
|
|
|
|
563
|
|
|
return model_dict |
|
564
|
|
|
|