| @@ 9-35 (lines=27) @@ | ||
| 6 | from tqdm import tqdm |
|
| 7 | ||
| 8 | ||
| 9 | def _process_(nth_process, optimizer): |
|
| 10 | if "progress_bar" in optimizer.verbosity: |
|
| 11 | p_bar = tqdm( |
|
| 12 | position=nth_process, |
|
| 13 | total=optimizer.n_iter, |
|
| 14 | ascii=" ─", |
|
| 15 | colour="Yellow", |
|
| 16 | ) |
|
| 17 | else: |
|
| 18 | p_bar = None |
|
| 19 | ||
| 20 | optimizer.search(nth_process, p_bar) |
|
| 21 | ||
| 22 | if p_bar: |
|
| 23 | p_bar.colour = "GREEN" |
|
| 24 | p_bar.refresh() |
|
| 25 | p_bar.close() |
|
| 26 | ||
| 27 | return { |
|
| 28 | "nth_process": nth_process, |
|
| 29 | "best_para": optimizer.best_para, |
|
| 30 | "best_score": optimizer.best_score, |
|
| 31 | "best_iter": optimizer.best_since_iter, |
|
| 32 | "eval_times": optimizer.eval_times, |
|
| 33 | "iter_times": optimizer.iter_times, |
|
| 34 | "search_data": optimizer.search_data, |
|
| 35 | "random_seed": optimizer.random_seed, |
|
| 36 | } |
|
| 37 | ||
| @@ 9-35 (lines=27) @@ | ||
| 6 | from tqdm import tqdm |
|
| 7 | ||
| 8 | ||
| 9 | def _process_(optimizer): |
|
| 10 | if "progress_bar" in optimizer.verbosity: |
|
| 11 | p_bar = tqdm( |
|
| 12 | position=optimizer.nth_process, |
|
| 13 | total=optimizer.n_iter, |
|
| 14 | ascii=" ─", |
|
| 15 | colour="Yellow", |
|
| 16 | ) |
|
| 17 | else: |
|
| 18 | p_bar = None |
|
| 19 | ||
| 20 | optimizer._search(p_bar) |
|
| 21 | ||
| 22 | if p_bar: |
|
| 23 | p_bar.colour = "GREEN" |
|
| 24 | p_bar.refresh() |
|
| 25 | p_bar.close() |
|
| 26 | ||
| 27 | return { |
|
| 28 | "nth_process": optimizer.nth_process, |
|
| 29 | "best_para": optimizer.best_para, |
|
| 30 | "best_score": optimizer.best_score, |
|
| 31 | "best_iter": optimizer.best_since_iter, |
|
| 32 | "eval_times": optimizer.eval_times, |
|
| 33 | "iter_times": optimizer.iter_times, |
|
| 34 | "search_data": optimizer.search_data, |
|
| 35 | "random_seed": optimizer.random_seed, |
|
| 36 | } |
|
| 37 | ||