Issues (1588)

myems-api/reports/spacestatistics.py (3 issues)

1
import re
2
from datetime import datetime, timedelta, timezone
3
from decimal import Decimal
4
import falcon
5
import mysql.connector
6
import simplejson as json
7
import config
8
import excelexporters.spacestatistics
9
from core import utilities
10
from core.useractivity import access_control, api_key_control
11
12
13
class Reporting:
14
    def __init__(self):
15
        """"Initializes Reporting"""
16
        pass
17
18
    @staticmethod
19
    def on_options(req, resp):
20
        _ = req
21
        resp.status = falcon.HTTP_200
22
23
    ####################################################################################################################
24
    # PROCEDURES
25
    # Step 1: valid parameters
26
    # Step 2: query the space
27
    # Step 3: query energy categories
28
    # Step 4: query associated sensors
29
    # Step 5: query associated points
30
    # Step 6: query base period energy input
31
    # Step 7: query reporting period energy input
32
    # Step 8: query tariff data
33
    # Step 9: query associated sensors and points data
34
    # Step 10: construct the report
35
    ####################################################################################################################
36
    @staticmethod
37
    def on_get(req, resp):
38
        if 'API-KEY' not in req.headers or \
39
                not isinstance(req.headers['API-KEY'], str) or \
40
                len(str.strip(req.headers['API-KEY'])) == 0:
41
            access_control(req)
42
        else:
43
            api_key_control(req)
44
        print(req.params)
45
        space_id = req.params.get('spaceid')
46
        space_uuid = req.params.get('spaceuuid')
47
        period_type = req.params.get('periodtype')
48
        base_period_start_datetime_local = req.params.get('baseperiodstartdatetime')
49
        base_period_end_datetime_local = req.params.get('baseperiodenddatetime')
50
        reporting_period_start_datetime_local = req.params.get('reportingperiodstartdatetime')
51
        reporting_period_end_datetime_local = req.params.get('reportingperiodenddatetime')
52
        language = req.params.get('language')
53
        quick_mode = req.params.get('quickmode')
54
55
        ################################################################################################################
56
        # Step 1: valid parameters
57
        ################################################################################################################
58
        if space_id is None and space_uuid is None:
59
            raise falcon.HTTPError(status=falcon.HTTP_400,
60
                                   title='API.BAD_REQUEST',
61
                                   description='API.INVALID_SPACE_ID')
62
63
        if space_id is not None:
64
            space_id = str.strip(space_id)
65
            if not space_id.isdigit() or int(space_id) <= 0:
66
                raise falcon.HTTPError(status=falcon.HTTP_400,
67
                                       title='API.BAD_REQUEST',
68
                                       description='API.INVALID_SPACE_ID')
69
70
        if space_uuid is not None:
71
            regex = re.compile(r'^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I)
72
            match = regex.match(str.strip(space_uuid))
73
            if not bool(match):
74
                raise falcon.HTTPError(status=falcon.HTTP_400,
75
                                       title='API.BAD_REQUEST',
76
                                       description='API.INVALID_SPACE_UUID')
77
78
        if period_type is None:
79
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
80
                                   description='API.INVALID_PERIOD_TYPE')
81
        else:
82
            period_type = str.strip(period_type)
83
            if period_type not in ['hourly', 'daily', 'weekly', 'monthly', 'yearly']:
84
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
85
                                       description='API.INVALID_PERIOD_TYPE')
86
87
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
88
        if config.utc_offset[0] == '-':
89
            timezone_offset = -timezone_offset
90
91
        base_start_datetime_utc = None
92
        if base_period_start_datetime_local is not None and len(str.strip(base_period_start_datetime_local)) > 0:
93
            base_period_start_datetime_local = str.strip(base_period_start_datetime_local)
94
            try:
95
                base_start_datetime_utc = datetime.strptime(base_period_start_datetime_local, '%Y-%m-%dT%H:%M:%S')
96
            except ValueError:
97
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
98
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
99
            base_start_datetime_utc = \
100
                base_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset)
101
            # nomalize the start datetime
102
            if config.minutes_to_count == 30 and base_start_datetime_utc.minute >= 30:
103
                base_start_datetime_utc = base_start_datetime_utc.replace(minute=30, second=0, microsecond=0)
104
            else:
105
                base_start_datetime_utc = base_start_datetime_utc.replace(minute=0, second=0, microsecond=0)
106
107
        base_end_datetime_utc = None
108
        if base_period_end_datetime_local is not None and len(str.strip(base_period_end_datetime_local)) > 0:
109
            base_period_end_datetime_local = str.strip(base_period_end_datetime_local)
110
            try:
111
                base_end_datetime_utc = datetime.strptime(base_period_end_datetime_local, '%Y-%m-%dT%H:%M:%S')
112
            except ValueError:
113
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
114
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
115
            base_end_datetime_utc = \
116
                base_end_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset)
117
118
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
119
                base_start_datetime_utc >= base_end_datetime_utc:
120
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
121
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
122
123
        if reporting_period_start_datetime_local is None:
124
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
125
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
126
        else:
127
            reporting_period_start_datetime_local = str.strip(reporting_period_start_datetime_local)
128
            try:
129
                reporting_start_datetime_utc = datetime.strptime(reporting_period_start_datetime_local,
130
                                                                 '%Y-%m-%dT%H:%M:%S')
131
            except ValueError:
132
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
133
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
134
            reporting_start_datetime_utc = \
135
                reporting_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset)
136
            # nomalize the start datetime
137
            if config.minutes_to_count == 30 and reporting_start_datetime_utc.minute >= 30:
138
                reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=30, second=0, microsecond=0)
139
            else:
140
                reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=0, second=0, microsecond=0)
141
142
        if reporting_period_end_datetime_local is None:
143
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
144
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
145
        else:
146
            reporting_period_end_datetime_local = str.strip(reporting_period_end_datetime_local)
147
            try:
148
                reporting_end_datetime_utc = datetime.strptime(reporting_period_end_datetime_local,
149
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
150
                                             timedelta(minutes=timezone_offset)
151
            except ValueError:
152
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
153
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
154
155
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
156
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
157
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
158
159
        # if turn quick mode on, do not return parameters data and excel file
160
        is_quick_mode = False
161
        if quick_mode is not None and \
162
                len(str.strip(quick_mode)) > 0 and \
163
                str.lower(str.strip(quick_mode)) in ('true', 't', 'on', 'yes', 'y'):
164
            is_quick_mode = True
165
166
        trans = utilities.get_translation(language)
167
        trans.install()
168
        _ = trans.gettext
169
170
        ################################################################################################################
171
        # Step 2: query the space
172
        ################################################################################################################
173
        cnx_system = mysql.connector.connect(**config.myems_system_db)
174
        cursor_system = cnx_system.cursor()
175
176
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
177
        cursor_energy = cnx_energy.cursor()
178
179
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
180
        cursor_historical = cnx_historical.cursor()
181
182
        if space_id is not None:
183
            cursor_system.execute(" SELECT id, name, area, number_of_occupants, cost_center_id "
184
                                  " FROM tbl_spaces "
185
                                  " WHERE id = %s ", (space_id,))
186
            row_space = cursor_system.fetchone()
187
        elif space_uuid is not None:
188
            cursor_system.execute(" SELECT id, name, area, number_of_occupants, cost_center_id "
189
                                  " FROM tbl_spaces "
190
                                  " WHERE uuid = %s ", (space_uuid,))
191
            row_space = cursor_system.fetchone()
192
193 View Code Duplication
        if row_space is None:
0 ignored issues
show
This code seems to be duplicated in your project.
Loading history...
The variable row_space does not seem to be defined for all execution paths.
Loading history...
194
            if cursor_system:
195
                cursor_system.close()
196
            if cnx_system:
197
                cnx_system.close()
198
199
            if cursor_energy:
200
                cursor_energy.close()
201
            if cnx_energy:
202
                cnx_energy.close()
203
204
            if cursor_historical:
205
                cursor_historical.close()
206
            if cnx_historical:
207
                cnx_historical.close()
208
            raise falcon.HTTPError(status=falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND')
209
210
        space = dict()
211
        space['id'] = row_space[0]
212
        space['name'] = row_space[1]
213
        space['area'] = row_space[2]
214
        space['number_of_occupants'] = row_space[3]
215
        space['cost_center_id'] = row_space[4]
216
217
        ################################################################################################################
218
        # Step 3: query energy categories
219
        ################################################################################################################
220
        energy_category_set = set()
221
        # query energy categories in base period
222
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
223
                              " FROM tbl_space_input_category_hourly "
224
                              " WHERE space_id = %s "
225
                              "     AND start_datetime_utc >= %s "
226
                              "     AND start_datetime_utc < %s ",
227
                              (space['id'], base_start_datetime_utc, base_end_datetime_utc))
228
        rows_energy_categories = cursor_energy.fetchall()
229
        if rows_energy_categories is not None and len(rows_energy_categories) > 0:
230
            for row_energy_category in rows_energy_categories:
231
                energy_category_set.add(row_energy_category[0])
232
233
        # query energy categories in reporting period
234
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
235
                              " FROM tbl_space_input_category_hourly "
236
                              " WHERE space_id = %s "
237
                              "     AND start_datetime_utc >= %s "
238
                              "     AND start_datetime_utc < %s ",
239
                              (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
240
        rows_energy_categories = cursor_energy.fetchall()
241
        if rows_energy_categories is not None and len(rows_energy_categories) > 0:
242
            for row_energy_category in rows_energy_categories:
243
                energy_category_set.add(row_energy_category[0])
244
245
        # query all energy categories in base period and reporting period
246
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
247
                              " FROM tbl_energy_categories "
248
                              " ORDER BY id ", )
249
        rows_energy_categories = cursor_system.fetchall()
250
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
251
            if cursor_system:
252
                cursor_system.close()
253
            if cnx_system:
254
                cnx_system.close()
255
256
            if cursor_energy:
257
                cursor_energy.close()
258
            if cnx_energy:
259
                cnx_energy.close()
260
261
            if cursor_historical:
262
                cursor_historical.close()
263
            if cnx_historical:
264
                cnx_historical.close()
265
            raise falcon.HTTPError(status=falcon.HTTP_404,
266
                                   title='API.NOT_FOUND',
267
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
268
        energy_category_dict = dict()
269
        for row_energy_category in rows_energy_categories:
270
            if row_energy_category[0] in energy_category_set:
271
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
272
                                                                "unit_of_measure": row_energy_category[2],
273
                                                                "kgce": row_energy_category[3],
274
                                                                "kgco2e": row_energy_category[4]}
275
276
        ################################################################################################################
277
        # Step 4: query associated sensors
278
        ################################################################################################################
279
        point_list = list()
280
        cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type  "
281
                              " FROM tbl_spaces sp, tbl_sensors se, tbl_spaces_sensors spse, "
282
                              "      tbl_points po, tbl_sensors_points sepo "
283
                              " WHERE sp.id = %s AND sp.id = spse.space_id AND spse.sensor_id = se.id "
284
                              "       AND se.id = sepo.sensor_id AND sepo.point_id = po.id "
285
                              " ORDER BY po.id ", (space['id'],))
286
        rows_points = cursor_system.fetchall()
287
        if rows_points is not None and len(rows_points) > 0:
288
            for row in rows_points:
289
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
290
291
        ################################################################################################################
292
        # Step 5: query associated points
293
        ################################################################################################################
294
        cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type  "
295
                              " FROM tbl_spaces sp, tbl_spaces_points sppo, tbl_points po "
296
                              " WHERE sp.id = %s AND sp.id = sppo.space_id AND sppo.point_id = po.id "
297
                              " ORDER BY po.id ", (space['id'],))
298
        rows_points = cursor_system.fetchall()
299
        if rows_points is not None and len(rows_points) > 0:
300
            for row in rows_points:
301
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
302
303
        ################################################################################################################
304
        # Step 6: query base period energy input
305
        ################################################################################################################
306
        base = dict()
307
        if energy_category_set is not None and len(energy_category_set) > 0:
308
            for energy_category_id in energy_category_set:
309
                base[energy_category_id] = dict()
310
                base[energy_category_id]['timestamps'] = list()
311
                base[energy_category_id]['values'] = list()
312
                base[energy_category_id]['subtotal'] = Decimal(0.0)
313
                base[energy_category_id]['mean'] = None
314
                base[energy_category_id]['median'] = None
315
                base[energy_category_id]['minimum'] = None
316
                base[energy_category_id]['maximum'] = None
317
                base[energy_category_id]['stdev'] = None
318
                base[energy_category_id]['variance'] = None
319
320
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
321
                                      " FROM tbl_space_input_category_hourly "
322
                                      " WHERE space_id = %s "
323
                                      "     AND energy_category_id = %s "
324
                                      "     AND start_datetime_utc >= %s "
325
                                      "     AND start_datetime_utc < %s "
326
                                      " ORDER BY start_datetime_utc ",
327
                                      (space['id'],
328
                                       energy_category_id,
329
                                       base_start_datetime_utc,
330
                                       base_end_datetime_utc))
331
                rows_space_hourly = cursor_energy.fetchall()
332
333
                rows_space_periodically, \
334
                    base[energy_category_id]['mean'], \
335
                    base[energy_category_id]['median'], \
336
                    base[energy_category_id]['minimum'], \
337
                    base[energy_category_id]['maximum'], \
338
                    base[energy_category_id]['stdev'], \
339
                    base[energy_category_id]['variance'] = \
340
                    utilities.statistics_hourly_data_by_period(rows_space_hourly,
341
                                                               base_start_datetime_utc,
342
                                                               base_end_datetime_utc,
343
                                                               period_type)
344
345
                for row_space_periodically in rows_space_periodically:
346
                    current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \
347
                                             timedelta(minutes=timezone_offset)
348
                    if period_type == 'hourly':
349
                        current_datetime = current_datetime_local.isoformat()[0:19]
350
                    elif period_type == 'daily':
351
                        current_datetime = current_datetime_local.isoformat()[0:10]
352
                    elif period_type == 'weekly':
353
                        current_datetime = current_datetime_local.isoformat()[0:10]
354
                    elif period_type == 'monthly':
355
                        current_datetime = current_datetime_local.isoformat()[0:7]
356
                    elif period_type == 'yearly':
357
                        current_datetime = current_datetime_local.isoformat()[0:4]
358
359
                    actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1]
360
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
361
                    base[energy_category_id]['values'].append(actual_value)
362
                    base[energy_category_id]['subtotal'] += actual_value
363
364
        ################################################################################################################
365
        # Step 7: query reporting period energy input
366
        ################################################################################################################
367
        reporting = dict()
368
        if energy_category_set is not None and len(energy_category_set) > 0:
369
            for energy_category_id in energy_category_set:
370
                reporting[energy_category_id] = dict()
371
                reporting[energy_category_id]['timestamps'] = list()
372
                reporting[energy_category_id]['values'] = list()
373
                reporting[energy_category_id]['subtotal'] = Decimal(0.0)
374
                reporting[energy_category_id]['mean'] = None
375
                reporting[energy_category_id]['median'] = None
376
                reporting[energy_category_id]['minimum'] = None
377
                reporting[energy_category_id]['maximum'] = None
378
                reporting[energy_category_id]['stdev'] = None
379
                reporting[energy_category_id]['variance'] = None
380
381
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
382
                                      " FROM tbl_space_input_category_hourly "
383
                                      " WHERE space_id = %s "
384
                                      "     AND energy_category_id = %s "
385
                                      "     AND start_datetime_utc >= %s "
386
                                      "     AND start_datetime_utc < %s "
387
                                      " ORDER BY start_datetime_utc ",
388
                                      (space['id'],
389
                                       energy_category_id,
390
                                       reporting_start_datetime_utc,
391
                                       reporting_end_datetime_utc))
392
                rows_space_hourly = cursor_energy.fetchall()
393
394
                rows_space_periodically, \
395
                    reporting[energy_category_id]['mean'], \
396
                    reporting[energy_category_id]['median'], \
397
                    reporting[energy_category_id]['minimum'], \
398
                    reporting[energy_category_id]['maximum'], \
399
                    reporting[energy_category_id]['stdev'], \
400
                    reporting[energy_category_id]['variance'] = \
401
                    utilities.statistics_hourly_data_by_period(rows_space_hourly,
402
                                                               reporting_start_datetime_utc,
403
                                                               reporting_end_datetime_utc,
404
                                                               period_type)
405
406
                for row_space_periodically in rows_space_periodically:
407
                    current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \
408
                                             timedelta(minutes=timezone_offset)
409
                    if period_type == 'hourly':
410
                        current_datetime = current_datetime_local.isoformat()[0:19]
411
                    elif period_type == 'daily':
412
                        current_datetime = current_datetime_local.isoformat()[0:10]
413
                    elif period_type == 'weekly':
414
                        current_datetime = current_datetime_local.isoformat()[0:10]
415
                    elif period_type == 'monthly':
416
                        current_datetime = current_datetime_local.isoformat()[0:7]
417
                    elif period_type == 'yearly':
418
                        current_datetime = current_datetime_local.isoformat()[0:4]
419
420
                    actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1]
421
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
422
                    reporting[energy_category_id]['values'].append(actual_value)
423
                    reporting[energy_category_id]['subtotal'] += actual_value
424
425
        ################################################################################################################
426
        # Step 8: query tariff data
427
        ################################################################################################################
428
        parameters_data = dict()
429
        parameters_data['names'] = list()
430
        parameters_data['timestamps'] = list()
431
        parameters_data['values'] = list()
432
        if config.is_tariff_appended and not is_quick_mode:
433
            if energy_category_set is not None and len(energy_category_set) > 0:
434
                for energy_category_id in energy_category_set:
435
                    energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'],
436
                                                                                        energy_category_id,
437
                                                                                        reporting_start_datetime_utc,
438
                                                                                        reporting_end_datetime_utc)
439
                    tariff_timestamp_list = list()
440
                    tariff_value_list = list()
441
                    for k, v in energy_category_tariff_dict.items():
442
                        # convert k from utc to local
443
                        k = k + timedelta(minutes=timezone_offset)
444
                        tariff_timestamp_list.append(k.isoformat()[0:19])
445
                        tariff_value_list.append(v)
446
447
                    parameters_data['names'].append(_('Tariff') + '-'
448
                                                    + energy_category_dict[energy_category_id]['name'])
449
                    parameters_data['timestamps'].append(tariff_timestamp_list)
450
                    parameters_data['values'].append(tariff_value_list)
451
452
        ################################################################################################################
453
        # Step 9: query associated sensors and points data
454
        ################################################################################################################
455
        if not is_quick_mode:
456
            for point in point_list:
457
                point_values = []
458
                point_timestamps = []
459
                if point['object_type'] == 'ENERGY_VALUE':
460
                    query = (" SELECT utc_date_time, actual_value "
461
                             " FROM tbl_energy_value "
462
                             " WHERE point_id = %s "
463
                             "       AND utc_date_time BETWEEN %s AND %s "
464
                             " ORDER BY utc_date_time ")
465
                    cursor_historical.execute(query, (point['id'],
466
                                                      reporting_start_datetime_utc,
467
                                                      reporting_end_datetime_utc))
468
                    rows = cursor_historical.fetchall()
469
470
                    if rows is not None and len(rows) > 0:
471
                        for row in rows:
472
                            current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
473
                                                     timedelta(minutes=timezone_offset)
474
                            current_datetime = current_datetime_local.isoformat()[0:19]
475
                            point_timestamps.append(current_datetime)
476
                            point_values.append(row[1])
477
                elif point['object_type'] == 'ANALOG_VALUE':
478
                    query = (" SELECT utc_date_time, actual_value "
479
                             " FROM tbl_analog_value "
480
                             " WHERE point_id = %s "
481
                             "       AND utc_date_time BETWEEN %s AND %s "
482
                             " ORDER BY utc_date_time ")
483
                    cursor_historical.execute(query, (point['id'],
484
                                                      reporting_start_datetime_utc,
485
                                                      reporting_end_datetime_utc))
486
                    rows = cursor_historical.fetchall()
487
488
                    if rows is not None and len(rows) > 0:
489
                        for row in rows:
490
                            current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
491
                                                     timedelta(minutes=timezone_offset)
492
                            current_datetime = current_datetime_local.isoformat()[0:19]
493
                            point_timestamps.append(current_datetime)
494
                            point_values.append(row[1])
495
                elif point['object_type'] == 'DIGITAL_VALUE':
496
                    query = (" SELECT utc_date_time, actual_value "
497
                             " FROM tbl_digital_value "
498
                             " WHERE point_id = %s "
499
                             "       AND utc_date_time BETWEEN %s AND %s "
500
                             " ORDER BY utc_date_time ")
501
                    cursor_historical.execute(query, (point['id'],
502
                                                      reporting_start_datetime_utc,
503
                                                      reporting_end_datetime_utc))
504
                    rows = cursor_historical.fetchall()
505
506
                    if rows is not None and len(rows) > 0:
507
                        for row in rows:
508
                            current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
509
                                                     timedelta(minutes=timezone_offset)
510
                            current_datetime = current_datetime_local.isoformat()[0:19]
511
                            point_timestamps.append(current_datetime)
512
                            point_values.append(row[1])
513
514
                parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
515
                parameters_data['timestamps'].append(point_timestamps)
516
                parameters_data['values'].append(point_values)
517
518
        ################################################################################################################
519
        # Step 10: construct the report
520
        ################################################################################################################
521
        if cursor_system:
522
            cursor_system.close()
523
        if cnx_system:
524
            cnx_system.close()
525
526
        if cursor_energy:
527
            cursor_energy.close()
528
        if cnx_energy:
529
            cnx_energy.close()
530
531
        if cursor_historical:
532
            cursor_historical.close()
533
        if cnx_historical:
534
            cnx_historical.close()
535
536
        result = dict()
537
538
        result['space'] = dict()
539
        result['space']['name'] = space['name']
540
        result['space']['area'] = space['area']
541
        result['space']['number_of_occupants'] = space['number_of_occupants']
542
543
        result['base_period'] = dict()
544
        result['base_period']['names'] = list()
545
        result['base_period']['units'] = list()
546
        result['base_period']['timestamps'] = list()
547
        result['base_period']['values'] = list()
548
        result['base_period']['subtotals'] = list()
549
        result['base_period']['means'] = list()
550
        result['base_period']['medians'] = list()
551
        result['base_period']['minimums'] = list()
552
        result['base_period']['maximums'] = list()
553
        result['base_period']['stdevs'] = list()
554
        result['base_period']['variances'] = list()
555
556
        if energy_category_set is not None and len(energy_category_set) > 0:
557
            for energy_category_id in energy_category_set:
558
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
559
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
560
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
561
                result['base_period']['values'].append(base[energy_category_id]['values'])
562
                result['base_period']['subtotals'].append(base[energy_category_id]['subtotal'])
563
                result['base_period']['means'].append(base[energy_category_id]['mean'])
564
                result['base_period']['medians'].append(base[energy_category_id]['median'])
565
                result['base_period']['minimums'].append(base[energy_category_id]['minimum'])
566
                result['base_period']['maximums'].append(base[energy_category_id]['maximum'])
567
                result['base_period']['stdevs'].append(base[energy_category_id]['stdev'])
568
                result['base_period']['variances'].append(base[energy_category_id]['variance'])
569
570
        result['reporting_period'] = dict()
571
        result['reporting_period']['names'] = list()
572
        result['reporting_period']['energy_category_ids'] = list()
573
        result['reporting_period']['units'] = list()
574
        result['reporting_period']['timestamps'] = list()
575
        result['reporting_period']['values'] = list()
576
        result['reporting_period']['rates'] = list()
577
        result['reporting_period']['subtotals'] = list()
578
        result['reporting_period']['means'] = list()
579
        result['reporting_period']['means_per_unit_area'] = list()
580
        result['reporting_period']['means_per_capita'] = list()
581
        result['reporting_period']['means_increment_rate'] = list()
582
        result['reporting_period']['medians'] = list()
583
        result['reporting_period']['medians_per_unit_area'] = list()
584
        result['reporting_period']['medians_per_capita'] = list()
585
        result['reporting_period']['medians_increment_rate'] = list()
586
        result['reporting_period']['minimums'] = list()
587
        result['reporting_period']['minimums_per_unit_area'] = list()
588
        result['reporting_period']['minimums_per_capita'] = list()
589
        result['reporting_period']['minimums_increment_rate'] = list()
590
        result['reporting_period']['maximums'] = list()
591
        result['reporting_period']['maximums_per_unit_area'] = list()
592
        result['reporting_period']['maximums_per_capita'] = list()
593
        result['reporting_period']['maximums_increment_rate'] = list()
594
        result['reporting_period']['stdevs'] = list()
595
        result['reporting_period']['stdevs_per_unit_area'] = list()
596
        result['reporting_period']['stdevs_per_capita'] = list()
597
        result['reporting_period']['stdevs_increment_rate'] = list()
598
        result['reporting_period']['variances'] = list()
599
        result['reporting_period']['variances_per_unit_area'] = list()
600
        result['reporting_period']['variances_per_capita'] = list()
601
        result['reporting_period']['variances_increment_rate'] = list()
602
603
        if energy_category_set is not None and len(energy_category_set) > 0:
604
            for energy_category_id in energy_category_set:
605
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
606
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
607
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
608
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
609
                result['reporting_period']['values'].append(reporting[energy_category_id]['values'])
610
                result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal'])
611
                result['reporting_period']['means'].append(reporting[energy_category_id]['mean'])
612
                result['reporting_period']['means_per_unit_area'].append(
613
                    reporting[energy_category_id]['mean'] / space['area']
614
                    if reporting[energy_category_id]['mean'] is not None and
615
                    space['area'] is not None and
616
                    space['area'] > Decimal(0.0)
617
                    else None)
618
                result['reporting_period']['means_per_capita'].append(
619
                    reporting[energy_category_id]['mean'] / space['number_of_occupants']
620
                    if reporting[energy_category_id]['mean'] is not None and
621
                    space['number_of_occupants'] is not None and
622
                    space['number_of_occupants'] > Decimal(0.0)
623
                    else None)
624
                result['reporting_period']['means_increment_rate'].append(
625
                    (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) /
626
                    base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and
627
                                                         base[energy_category_id]['mean'] > Decimal(0.0))
628
                    else None)
629
                result['reporting_period']['medians'].append(reporting[energy_category_id]['median'])
630
                result['reporting_period']['medians_per_unit_area'].append(
631
                    reporting[energy_category_id]['median'] / space['area']
632
                    if reporting[energy_category_id]['median'] is not None and
633
                    space['area'] is not None and
634
                    space['area'] > Decimal(0.0)
635
                    else None)
636
                result['reporting_period']['medians_per_capita'].append(
637
                    reporting[energy_category_id]['median'] / space['number_of_occupants']
638
                    if reporting[energy_category_id]['median'] is not None and
639
                    space['number_of_occupants'] is not None and
640
                    space['number_of_occupants'] > Decimal(0.0)
641
                    else None)
642
                result['reporting_period']['medians_increment_rate'].append(
643
                    (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) /
644
                    base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and
645
                                                           base[energy_category_id]['median'] > Decimal(0.0))
646
                    else None)
647
                result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum'])
648
                result['reporting_period']['minimums_per_unit_area'].append(
649
                    reporting[energy_category_id]['minimum'] / space['area']
650
                    if reporting[energy_category_id]['minimum'] is not None and
651
                    space['area'] is not None and space['area'] > Decimal(0.0)
652
                    else None)
653
                result['reporting_period']['minimums_per_capita'].append(
654
                    reporting[energy_category_id]['minimum'] / space['number_of_occupants']
655
                    if reporting[energy_category_id]['minimum'] is not None and
656
                    space['number_of_occupants'] is not None and space['number_of_occupants'] > Decimal(0.0)
657
                    else None)
658
                result['reporting_period']['minimums_increment_rate'].append(
659
                    (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) /
660
                    base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and
661
                                                            base[energy_category_id]['minimum'] > Decimal(0.0))
662
                    else None)
663
                result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum'])
664
                result['reporting_period']['maximums_per_unit_area'].append(
665
                    reporting[energy_category_id]['maximum'] / space['area']
666
                    if reporting[energy_category_id]['maximum'] is not None and
667
                    space['area'] is not None and
668
                    space['area'] > Decimal(0.0)
669
                    else None)
670
                result['reporting_period']['maximums_per_capita'].append(
671
                    reporting[energy_category_id]['maximum'] / space['number_of_occupants']
672
                    if reporting[energy_category_id]['maximum'] is not None and
673
                    space['number_of_occupants'] is not None and
674
                    space['number_of_occupants'] > Decimal(0.0)
675
                    else None)
676
                result['reporting_period']['maximums_increment_rate'].append(
677
                    (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) /
678
                    base[energy_category_id]['maximum']
679
                    if (base[energy_category_id]['maximum'] is not None and
680
                        base[energy_category_id]['maximum'] > Decimal(0.0))
681
                    else None)
682
                result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev'])
683
                result['reporting_period']['stdevs_per_unit_area'].append(
684
                    reporting[energy_category_id]['stdev'] / space['area']
685
                    if reporting[energy_category_id]['stdev'] is not None and
686
                    space['area'] is not None and
687
                    space['area'] > Decimal(0.0)
688
                    else None)
689
                result['reporting_period']['stdevs_per_capita'].append(
690
                    reporting[energy_category_id]['stdev'] / space['number_of_occupants']
691
                    if reporting[energy_category_id]['stdev'] is not None and
692
                    space['number_of_occupants'] is not None and
693
                    space['number_of_occupants'] > Decimal(0.0)
694
                    else None)
695
                result['reporting_period']['stdevs_increment_rate'].append(
696
                    (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) /
697
                    base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and
698
                                                          base[energy_category_id]['stdev'] > Decimal(0.0))
699
                    else None)
700
                result['reporting_period']['variances'].append(reporting[energy_category_id]['variance'])
701
                result['reporting_period']['variances_per_unit_area'].append(
702
                    reporting[energy_category_id]['variance'] / space['area']
703
                    if reporting[energy_category_id]['variance'] is not None and
704
                    space['area'] is not None and
705
                    space['area'] > Decimal(0.0)
706
                    else None)
707
                result['reporting_period']['variances_per_capita'].append(
708
                    reporting[energy_category_id]['variance'] / space['number_of_occupants']
709
                    if reporting[energy_category_id]['variance'] is not None and
710
                    space['number_of_occupants'] is not None and
711
                    space['number_of_occupants'] > Decimal(0.0)
712
                    else None)
713
                result['reporting_period']['variances_increment_rate'].append(
714
                    (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) /
715
                    base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and
716
                                                             base[energy_category_id]['variance'] > Decimal(0.0))
717
                    else None)
718
719
                rate = list()
720
                for index, value in enumerate(reporting[energy_category_id]['values']):
721
                    if index < len(base[energy_category_id]['values']) \
722
                            and base[energy_category_id]['values'][index] != 0 and value != 0:
723
                        rate.append((value - base[energy_category_id]['values'][index])
724
                                    / base[energy_category_id]['values'][index])
725
                    else:
726
                        rate.append(None)
727
                result['reporting_period']['rates'].append(rate)
728
729
        result['parameters'] = {
730
            "names": parameters_data['names'],
731
            "timestamps": parameters_data['timestamps'],
732
            "values": parameters_data['values']
733
        }
734
        # export result to Excel file and then encode the file to base64 string
735
        if not is_quick_mode:
736
            result['excel_bytes_base64'] = excelexporters.spacestatistics.export(result,
737
                                                                                 space['name'],
738
                                                                                 base_period_start_datetime_local,
739
                                                                                 base_period_end_datetime_local,
740
                                                                                 reporting_period_start_datetime_local,
741
                                                                                 reporting_period_end_datetime_local,
742
                                                                                 period_type,
743
                                                                                 language)
744
745
        resp.text = json.dumps(result)
746